Portland Region

2020 Traffic Performance Report

Oregon Department of Transportation: Region 1
December 2021

Rian Windsheimer，Region 1 Manager
Chris Ford，Policy and Development Manager
Kristen Stallman，Major Projects Manager
Sandra Hikari，Senior Transportation Planner
Scott Turnoy，Principal Transportation Planner Kerrie Franey，Associate Transportation Planner Chi Mai，Transportation System Analysis Engineer Katherine Bell，Senior Transportation Engineer Natalie Liljenwall，Air Quality Program Coordinator Jacob Hagen，Major Projects Intern

John Bosket，Project Manager，DKS Mike Mauch，DKS

Amanda Deering，DKS
Maggie Lin，DKS

For ADA（Americans with Disabilities Act）or Civil Rights Title VI accommodations，translation／interpretation services，or more information call 503－731－4128，TTY 800－735－2900 or Oregon Relay Service 7－1－1．
Si desea obtener información sobre este proyecto traducida al español，sírvase llamar al 503－731－4128．
Если вы хотите，чтобы информация об этом проекте была переведена на русский язык，пожалуйста，звоните по телефону 503－731－4128．

如果您想瞭解這個項目翻譯成 繁體中文 的相關資訊，請致電（503）731－4128．如果您想了解这个项目翻译成简体中文的相关信息，请致电503－731－4128．

이 프로젝트에 관한 한국어로 된 자료 신청방법 전화：503－731－4128

[^0]
Portland Region
 2020 Traffic Performance Report

Oregon Department of Transportation
Region 1

TABLE OF
CONTENTS
Overview
Regional Performance Summary
Congestion
19 Freight
21 Safety
23 Incidents
25 Corridors
27 1－5
$\begin{array}{ll}35 & 1-84 \\ 43 & 1-205\end{array}$
$\begin{array}{ll}43 & 1-205 \\ 51 & 1-405\end{array}$
59 US 26
67 OR 217
75 References
76 Glossary
80 Appendix

Overview

Purpose of this report
This 2020 Traffic Performance Report provides information on the health of the region's freeway system. It continues a baseline for long-term monitoring that will enable Oregon Department of Transportation (ODOT) to better understand the urban traffic mobility conditions of the reeway system.

Changes in the federal requirements for transportation planning, shrinking transportation revenues and new big data sources create a need to develop benchmarks for ongoing performance monitoring.
ODOT manages the freeway system for safe, efficient and eliable operations. ODOT focuses on improvements at key locations to address congestion and safety hot spots. mprovements are guided by Oregon Highway Plan Policy 1G.1, which prioritizes the preservation and mprovement of existing system functionality ove additional freeway capacity or new facilities.
Advancements in traffic data collection methods have enabled ODOT to systematically collect, store, evaluate and monitor traffic conditions on all of its freeway corridors the metro area. By monitoring key transportatio erformance indicators, ODOT can identify problems and effectively manage the system to better enable the movement of people, goods and services

Measuring Performance
Key traffic performance areas that relate to urban mobility
Congestion and bottlenecks

- Hours of congestion

Vehicle hours of delay

- Travel time

Speeds
Recurring bottlenecks
Reliability
AM, Mid-day, PM
Safety

- Frequency of crashes and non-crash incident

Crashes and non-crash incidents by time of day and type

Performance measures indicate the variety of CHALLENGES facing the region's freeway system:

$$
\begin{array}{cc}
\text { ALL CORRIDORS } & \text { LACK OF TRAVEL TIME } \\
\text { EXPERIENCE } & \text { RELIABILITY on } \\
\text { SEVERE CONGESTION } & \text { ALL CORRIDORS }
\end{array}
$$

Improved data
The 2020 report focuses on data to illustrate the performance of the freeeway system in 2019 . A few changes that were made from the 2018 Traffic Performance Report are.

- New data sources were used for the empirical freeway travel-time and speeds. The 2018 repor utilized commercial HERE data while the 2020 utiized commercial HERE data while the 2020 details on changes in the 2020 Traffic Performance Report can be found in the glossary.
- New refined data sources were used to more accurately capture freeway corridors within Region 1, slightly changing corridor lengths compared to the 2018 report.
- The 2020 report includes a new analysis of freeway Greenhouse Gas Emissions and potential reductions if operations improved.

TIME PERIODS REPORTED

TRAVEL TIME, SPEED AND RELIABILITY indicators are reported for the AM peak, Mid-day, and PM peak periods.

These time periods include enough time to capture the current periods to allow for tracking of congestion.

Corridor-level management

ODOT implements cost-effective operational improvements that reduce crashes and delay, increase reliability and relieve congestion at recurring bottlenecks on the freeway system.

- ODOT Corridor Bottleneck Operations Study
(CBOS) projects are cost-effective improvements, such as auxiliary lanes, to address safety and operations problems at specific, localized bottlenecks.
- ODOT's RealTime strategy is a toolbox of active traffic management technologies, designed to improve safety and reliability by providing variable advisory speed, queue warning, ramp metering and traveler information to manage congestion.

The Transportation Management and Operations Center (TMOC) Program provides a single, regional point of contact for around-the-clock monitoring of transportation system operations and coordination of transportation related communications and services. TMOC specially trained personnel monito freeway corridors and work in partnership with law enforcement, fire rescue and medical teams, and tow operators to provide safe and efficient traffic flow around an incident.

There are six freeway corridors in Region 1:

Traffic has reached a point of severe congestion and highly unreliable travel conditions during the peak periods

Congestion in the Portland metro area steadily increased in the last decade, with regional growth trends showing that these increases are likely to be sustained and expanded for the foreseeable future. Traffic in the Portland region has reached a point of severe congestion and highly unreliable travel conditions during the peak periods.
The Portland metro region encompasses portions of three counties and is the most urban and populous region in the state. According to the US Census Bureau, in 2019 the region had the 25th largest metro area population in the country and from 2010-2019, was 22 nd on the list of US metro areas with the greatest number of new residents. In 2019, Portland utpaced the national average for metro area job growth at $2 \%{ }^{2}{ }^{2}$ Portland International Airport served 19.9 million passengers and the Portland metro region had 8.8 million overnight visitor stays. Minimal expansion of the region's passengers and the Portland metro region had 8.8 million overnight visitor stays. Minimal expansion of the region's
infrastructure has occurred over the past 30 years, resulting in the rapid increase of congestion as demand exceeds capacity on all of the region's freeway corridors. The region's infrastructure is now tasked with accommodating additional traffic as more residents travel for daily activities, more visitors come to recreate and more businesses need to move goods and services on the highway system.
The population growth trajectory is anticipated to accelerate in the coming decades, with a 23% population increase from 2.5 million to over 3 million residents between 2018 and 2040 , and a 38% increase to 3.4 million residents by 2060.3

METRO AREA
 EMPLOYMENT has
 grown 2.0\%

2.49 MILLION PEOPLE NOW CALL THIS REGION HOME

Ens 4^{4}

TRAFFIC DEMAND EXCEEDS
CAPACITY LEADING TO
SEVERE CONGESTION
and UNRELIABLE TRAVEL TIME

Regional impacts
over the last decade, a strengthened local economy, ncreasing population and minimal investment for additional infrastructure contributed to increasing congestion, decreasing travel speeds, greater delays and unreliable trip times. Traffic congestion in the Portland region can now occur at any hour of the day, including mid-day and weekends; it is no longer only a weekday peak hour problem. On the average weekday, the entire region is congested for approximately 11.5 hours, or almost half of the day.

Severely congested conditions

The Portland metro area has the most severe freeway system congestion in the state. Congestion is caused by condition where demand exceeds capacity. This often occurs with lane reduction (l-5 at Rose Quarter from 3 to 2 lanes), older roadway design (I-5 at Interstate Bridge and Terwilliger curves) or significant on-ramp demand (I-205 at Airport Way). Congested conditions range from slowing ($40-50 \mathrm{mph}$) to congested ($30-40 \mathrm{mph}$) to severely congested (less than 30 mph). The Portland region freeways have reached a state of severe congestion with travel being highly unreliable during the peak periods. For motorists making a trip during the PM peak and planning to get to their destination on time, they are expected to allot 2-3 times the amount of travel time as compared to a trip made during off-peak or free-flow travel. The system is highly sensitive to disruptions; even minor weather and incident events can flip the flow from stable to unstable and breakdown conditions. During severe congestion, it takes much longer for the system to recover to stable flow and there is regular rerouting of motorists through the local system to avoid congestion.

Managing congestion to improve safety - incident management
Effective incident management is vital to a high-functioning highway system and to the safety of incident responders. Studies show that $60-65 \%$ of urban congestion is caused by incidents and for every minute a freeway lane is blocked due to an incident, it results in 4 minutes of travel delay. Efficient incident response can lead to less traveler time spent in backups, fewer secondary crashes, insurance claims and less financial loss due to highway incidents.
The Traffic Incident Management (TIM) program is a tool ODOT Region 1 employs to directly address traffic congestion and incident delay and improve safety on the freeway system. The TIM team operates specially equipped vehicles to perform the functions of incident prevention, motorist assistance and incident management. Staff monito freeways before, during and after peak commute periods, removing hazards and abandoned vehicles from travel lanes, medians and shoulders. Responders also assist motorists and clear disabled vehicles from travel lanes.

MAJOR EVENTS

This report uses quantitative data to tell the story of freeway traffic conditions. It helps to consider the dat in context, such as major non-traffic events that may significantly impact traffic data.

Major events affecting traffic vary in scale and cause. The most common events are weather-related, such as majo winter storms, flooding and landslides that may reduce traffic volume for a week or two. Forest fires have increase in frequency in recent years, with some causing major disruptions to travel, such as the Eagle Creek fire in 2017 which shut down over 30 miles of $1-84^{4}$ for more than three which ${ }^{2}$. Welar Eclipse in 2017 which prompted do dic and hentiol travil oren. Still the ty international travel to Orgon. Stil majer alth crises, can alter traffic volumes and daily commute patterns.

THERE HAS BEEN
 LESS 1% GROWTH THAN - \% IN FREEWAY LANE MILES

This traffic congestion directly affects freight in the region. In the past, freight relied on the congestion-free off-peak hours to move goods and services in the region. As the mid-day continues to be unreliable, freight has more problems meeting delivery schedules, resulting in increased shipping costs.
Overall, the number of incidents for the region's six freeway corridors increased in tandem with growing congestion.

REGIONAL freeway cost OF CONGESTION is $\$ 250$ millon annually

Regional Bottlenecks
Traffic data indicates the region's travel speeds and travel time reliability are severely congested. The following are the erformance indicators for the year 2019

Region's corridors with slowest average weekday peak period speed (mph)

2019 Average speeds (mph)				
Corridor Location	Posted Speed	AM	$\begin{gathered} \text { Mid- } \\ \text { day } \end{gathered}$	PM
$1-5 \mathrm{NB}$	50-65	44.4	45.4	26.5
1-5 SB	50-65	45.9	48.8	32.1
1-84 EB	55-65	59.2	55.6	45.4
1-84 WB	55-65	40.4	52.0	44.4
1-205 NB	55-65	52.5	52.1	29.2
1-205 SB	55-65	50.2	55.3	43.0
I-405 NB	50	51.6	46.2	21.1
I-405 SB	50	41.2	45.1	24.3
US 26 EB	50-55	40.6	49.8	40.2
US 26 WB	50-55	57.6	59.1	52
OR 217 NB	50-55	41.2	53.4	31.
OR 217 SB	50-55	37.4	44.8	31.9
Motorists on the freeway experience the slowest driving speeds in the PM peak period, with the exception of I-84 WB. This is the calculated average speed across all lanes for the entire corridor segment. The right lane in a bottleneck location often experiences much lower speeds.				

Region's top recurring bottlenecks
These are the most severe recurring bottlenecks in the region in terms of duration and length

terms of duration and length		1-5 NB				
		10.5	16.2	29.7		
Bottleneck location	2019		l-5 SB	7.5	14.5	29.8
$1-5$ NB	$\begin{aligned} & \text { 11:15 AM- } \\ & 8: 00 \text { PM } \end{aligned}$	1-205 NB	8.0	10.1	26.2	
Capitol Hwy	8.75 hrs 12.2 Miles	I-405 NB	0.3	1.4	5.1	
		1-405 SB	1.4	1.6	3.5	
		OR 217 NB	4.9	1.5	6.1	
		OR 217 SB	6.0	4.6	7.1	

Motorists in these corridors experience the most variations in travel time, all of which fall within the PM peak period. Motorists have to buffer in the highest extra time per corridor length in order to ensure on-time arrival. *Selection based on buffer time weighted for length of corridor

BUFFER TIME is a measure of RELIABILITY it is the EXTRA TIME or cushion a traveler must ADD TO THEIR TRIP
o ensure ON-TIME ARRIVAL.

Corridors with planning travel time higher during mid-day than AM peak period

	2019 Planning travel time (minutes)		
Corridor location	AM	Mid-	PM
1-5 NB	45.8	50.7	88.8
1-5 SB	41.6	46.6	78.5
1-84 EB	19.5	21.3	28.2
1-205 NB	38.3	40.6	80.6
1-405 NB	3.7	5.2	13.4

Peak periods are often thought of as being either in the AM or PM,
correlating to motorists' commute to and from work. As congestion in the correlating to motorists' commute to and from work. As congestion in the
Portland metro region worsens, peak periods are extending into the midPortland metro region worsens, peak periods are extending into the mid
day. Motorists and freight drivers may have previousely planned to avoid day. Motorists and freight drivers may have previousely planned to avoid
congestion by traveling in the mid-day, but instead are finding a longer mid-day planning travel time on these corridors.

Corridors with highest planning travel time*

	2019 Planning travel time (minutes)		
Corridor location	AM	$\underset{\text { Mid- }}{\substack{\text { day }}}$	PM
$1-5 \mathrm{NB}$	45.8	50.7	88.8
1-5 SB	41.6	46.6	78.5
1-205 NB	38.3	40.6	80.6
1-405 NB	3.7	5.2	13.4
I-405 SB	5.6	5.4	10.7
OR 217 SB	17.3	13.9	20.2

Motorists driving in these corridors have the highest planning travel time per mile. Planning travel time is the sum of average travel time and buffer travel time. In order to make it to the destination on time, motorists have allot more time to make the trip.
*selection based on planning travel time weighted for length of corridor

LANNING TRAVEL TIME is the sum of AVERAGE TRAVEL TIME and BUFFER TIME.

Annual Average Daily Traffic

The Annual Average Daily Traffic (AADT) two-way total volumes are presented for easy reference of traffic volume flow in 2019 on each freeway. Traffic volume data is collected by Automatic Traffic Recorders (ATRs) at specific areas along five of the six major freeways in Region 1. There are currently no ATRs on OR 217. Volumes tend to be the highest near the city center and along commuter routes, such as Interstate 5 which connects to Washington State and Salem.

In 2020, Governor Kate Brown made greenhouse gas (GHG) reduction and mitigation a top priority for the state by issuing Executive Order 20-04, which requires
development of specific actions, strategies, and analysis across multiple state agencies. EO 20-04 specifically tasks ODOT with working to reduce the amount of GHG emissions resulting from our investments in and management of the state's transportation system. In response, ODOT is working to advance GHG mitigation strategies, including implementation of transportation electrification, alternative/low carbon fuels, and increasing accessibility to connected multi-modal transportation networks.

In keeping with the focus of this report on freeway performance, including congestion and bottleneck areas, ODOT conducted analysis considering vehicle travel at all hours of the day (excluding weekends and holidays), including peak periods of traffic and times of free-flow conditions, to determine GHG emissions in each corridor and the impacts of traffic congestion on GHG emission rates. This is the first time ODOT has examined transportation emissions estimates across multiple corridors based on a mixture of observed speeds, the estimated mix of light-, medium-, and heavy-duty vehicles and modeled emission rates. See the Glossary for more
information about the GHG analysis conducted and description of the analysis methodology.
The single biggest driver of emissions, overall, is the number of vehicle miles traveled (VMT). Likewise, orridors with higher truck volumes also experience highe mission rates (measured in metric tons of CO2e pe million vehicle miles traveled annually). Freeway ongestion also directly correlates with increased GHG emissions. While the overall impact of areas with slower speeds was 2% of GHG emissions associated with freeway ravel, the analysis indicated that corridors with slower seeds, due to more severe, recurring congestion bottlenecks, experience higher GHG emission rates than ocations with higher peak period speeds. The network graphic above reflects the impact of slow speeds across the evaluated freeway corridor segments. Notable locations with an emissions surcharge of 10 percent or more include: I-5 in North Portland, the northern segment f I-405, and US 26 EB near the Vista Ridge Tunnel - all of which experience some of the slowest peak period speed in the region.
For more information about ODOT's emissions mitigation strategies, visit: https://www.oregon.gov/odot/Programs/ Pages/Climate-Office.aspx.

Cost of Delay

THE DAILY COST OF DELAY ON FREEWAYS IN THE PORTLAND METRO REGION IS

Congestion is characterized by slower speeds, longer trip times and increased vehicle queuing on the available ransportation network. The additional traffic burden of congestion affects a region's economy, resulting in a significant impact to employment. Truck deliveries connecting businesses throughout the state to the global marketplace are negatively impacted because of congestion. It is critical to continue to invest in the ransportation network in order to protect andenhance the state's economy and quality of life. Additional investments would generate 8,300 jobs and $\$ 1.1$ billion in non-monetary benefits in Oregon by year 2040. ${ }^{6}$
Many drivers experience the frustration of traffic congestion. This is caused by a few different factors, for example, limited capacity and the physical layout of the roadway. As the Portland metro region continues to grow, o will congestion, unless new tools are implemented. The daily cost of delay on freeways in the Portland metro region in 2019 was $\$ 1.2$ million (delay refers to travel speeds below free-flow). This number reflects the cost of trucks and cars delayed on freeways and does not reflect the environmental impacts and health issues related to emissions.
Congestion can also affect a region's economy due to significant impact to employment. Businesses rely on efficient transportation to remain competitive in the lobal market. More than 346,400 jobs in Oregon are ransportation-related or transportation-dependent, meaning that congestion and lack of investment threaten he state's economic vitality.

Daily Cost of Delay				
Corridor Location	2019			
I-5	$\$ 489 \mathrm{~K}$		$) \$$	Cost per Mile
:---				
I-84				

Evaluating new tools to manage congestion

In 2019, ODOT formed the Urban Mobility Office (UMO) to focus on comprehensive solutions to congestion, access and mobility issues, which affect quality of life is developing and delivering innovative solutions for is developing and delivering innovative solutions for Legislature in HB 2017 and HB 3055, including activ development of a tolling and congestion pricins prom

The Toll Program is part of the Statewide Transportation Improvement Program and includes two planning projects: interstate 205 in Clackamas County (OR 213 to Stafford Road) and a separate Regional Mobility Pricing Project that is considering the full corridor length of Interstate 5 in the Portland metro area and on $1-205$ extending from the limits of the I-205 toll project north to the Glenn Jackson Bridge and south to $\mathrm{l}-5$. The planning/environmental analysis phase is expected to continue into 2022 for the I-205 Tol
moiect and 2023 for the Regional Mobility Pricing Project.
I-205 Tolling: During the past year, work has been focused on coordination with the Federal Highway Administration and partners, planning for the toll back office system, and coordination with the planned I-205 Abernethy Bridge econstruction, seismic improvements and widening on -205. ODOT initiated an Environmental Assessment for -205 tolling under the federal National Environmental Policy Act during this period with modeling analysis and public engagement activities.
Regional Mobility Pricing Project: ODOT has initiated a ederal Planning and Environmental Linkage (PEL) process under NEPA along $1-5$ in the Portland metro area. In ender 2020, he Oregon Transportation Con issin, this study to the full length of I-5 and I-205.

Upcoming ODOT and partner projects to address bottlenecks and safety hotspots

Comprehensive Congestion Management and Mobility

 Projects Map```
Currently Funded by HB2017 \(\mathrm{O}=\mathrm{O}\) System Improvement Project * Bike/Ped Crossing Project
Made Possible with HB3055
\(\mathrm{O}=\mathrm{O}\) System Improvement Project
- Regional Mobility Pricing Projec
(-205 Toll Projed
Partner Project with ODOT Support
\(\mathrm{O}=\mathrm{O}\) System I mprovement Projed
(2) Bike/Ped Crossing Projec
\(0-1\) Bus on Shoulder Pilot - Trimet Project
```



Evaluating the Benefits of Infrastructure Improvements
ODOT recently invested federal and state dollars into four freeway improvement projects designed to minimize existing congestion and prevent future bottlenecks. ODOT conducted a Before/AAter Study utilizing similar
performance measures found in the Traffic Performance Report to analyze impacts of the improvements. Data from up to one year prior to construction compared to data from up to one year after the completion of construction prove a reduction in congestion and return on investment. This two-page spread shares a few
highlights of each infrastructure improvement analyzed. For further information, please look to the appendix.
I-205 Northbound: I-84 Eastbound to Killingsworth Street

## PROJECT CORRIDOR:

 Length: 1.05 mi posted speed: 55 mph construction date: Dec 2017 - Aug 2019 cost: $\$ 6.8 \mathrm{M}^{*}$
## IMPROVEMENTS MADE:

- Added an auxiliary lane on I-205 northbound to connect the l-84 eastbound on-ramp to the US 30 Bypass West/ Killingsworth Street off-ramp.

11 MINUTE IMPROVEMENT INTRIR RELLAALITY
DURINGTHEM PEAK
value of time saved S6.7 Million annually RESULTS: This project included improvements over an approximately one-mile
segment along northbound I-205. However, because congestion extended far to the segment along northbound $\mathrm{I}-205$. However, because congestion extended far
south, the benefits are summarized over an approximately 11 -mile segment (approximately Airport Way to OR 224) to capture the full impact of improvements.


1-205 Southbound: I-84 Eastbound to Powell Boulevard

PROJECT CORRIDOR: Length: 0.9 mi POSTED SPEED: 55 mph construction date: Dec 2017 - Apr 2019 cost: $\$ 6.8 \mathrm{M}^{*}$

IMPROVEMENTS MADE: - Added an auxiliary la connect the I-84 eastbound on-ramp to the Division Street/Powell Boulevard off-ramp.
hours of Congestion:

$\$ 3$ mem MILLION
anNUALLY

RESULTS: This project included improvements to a segment, just under one-mile Iong, along southbound I-205. But because congestion extended far to the north, the benefits are summarized over an approximately six-mile segment (approximately Foster Road to the Columbia River) to capture the full impact of improvements.


RealTime signs displaying traffic flow and roadway conditions.

## 1-5 Southbound: Lower Boones Ferry Road to l-205



RESULTS: This project was primarily intended to reduce congestion on l-5 southbound over a segment of just under two miles in length between Lower Boones Ferry Road and I-205. Travelers also experienced benefits upstream of this project, reaching as far as 3.2 miles up I-5 southbound and 1.3 miles up OR 217 southbound. This project represented the completion of efforts spanning nearly a decade to extend an auxiliary lane from the OR 217 southbound on-ramp to the I-205 off-ramp to lessen the impacts of traffic weaving between entrance and exit points in this area.

## US 26: Cornelius Pass Road to 185th Avenue

| PROJECT CORRIDOR: |
| :--- |
| LENGTH: 2.2 mi |
| POSTED SPEED: 55 mph |
| CONSTRUCTION DATE: |
| Sep 2016 - Nov 2018 |
| COST: $\$ 34.5 \mathrm{M}^{*}$ |

## IMPROVEMENTS MADE:

- Extended the third lane on - Improved the north US 26 in each direction US 26 in each direction between Cornelius Pass
Road and 185th Avenue. - Replaced the two US 26 / Replaced the two
Rock Creek bridges with one bridge. Cornelius Pass Roa Cornelius Pass Ro
interchange by interchange by
adding a second adding a second
lane to the west bound off-ramp


AVERAGE WEEKDAY TRAVEL SPEED
PM PEAK IN
(3-6PM)
$+6.5 \mathrm{MPH}$

## RESULTS: This project

 included improvements to both directions of US 26 between Cornelius Pass Road and 185th Avenue. However benefits Avown. How forer tbound traffic conditions only.[^1]
## Covid-19 Impacts on Region 1 Freeways

The long-term impacts of Covid-19 quarantines
and restrictions and the resulting
transportation impacts are still in a transition phase as the economy recovers, too new to be completely understood on a medium- to longerm timeline. There were noticeable impact on travel demand over the course of 2020, with traffic volumes falling by over $40 \%$ at the peak of the statewide order to shelter-in-place. However, traffic volumes rebounded rather quickly when restrictions were lifted. At the conclusion of 2020, traffic in Portland was back $80-90 \%$ of it's pre-Covid levels. Past
observations have shown that economic
activity is highly correlated with traffic in the ortland region. The stronger the economy, the higher the traffic volumes. As the
conomy continues to fluctuate in response to Covid-19 policies at the local and statewide evel, regional traffic volumes are anticipated to fluctuate.


Percent Change in Weekday Traffic Volume between 2019 and 2020

| Coridor <br> Location | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | Oct |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I-5 NB | $+1 \%$ | $+5 \%$ | $-39 \%$ | $-35 \%$ | $-25 \%$ | $-16 \%$ | $-14 \%$ | $-12 \%$ | $-9 \%$ | $-11 \%$ |

Weekday traffic volumes on freeways in Region 1 significantly dropped due to Covid-19 in mid-March, averaging a $40 \%$ decrease compared to the same time period in 2019. Traffic volume started to rebound on most corridors in April, and continued to increase in May and June. By summer, weekdada traffic volume on freeways in 2020 averaged a 10-15\% decrease compared to 2019. Some corridors even increased
to less than a $10 \%$ difference between 2019 and 2020 in September and October. At the end of 2020 , traffic volumes remained between lo less than a $10 \%$ difference between 2019 and 2020 in September and October. At the end of 2020 , traffic volumes remained between
$15-20 \%$ below 2019 traffic volumes with the exception of $1-5$ NB and $1-84$ WB where traffic volumes increased to about $10 \%$ below 2019 volumes.

Average Weekday Traffic Volume in 2020 by Freeway Corridor

## 100k -



20k -

| 0 - Jan Feb | Mar Apr May | June July Aug | Sept Oct | Nov Dec |
| :---: | :---: | :---: | :---: | :---: |
| Key Dates and Events |  |  |  |  |
| March 16: Gov. Brown institutes first round of restrictions due to Covid-19, including closing schools, closing recreational facilities and prohibiting indoor dining | March 23: Gov. Brown issues a stay-at-home order as the majority of businesses transition to remote work, all public facilities close and daycare facilities and schools close indefinitely | June 22: After all counties reopen to at least Phase 1 of restrictions, traffic volumes plateau | September 7-17: Forest fires in and around Region 1 affect traffic volumes due to evacuation orders and hazardous air quality | November 26 and <br> December 24-31: Traffic volumes decrease during the Thanksgiving, Christmas and New Years holidays |

*The Interstate Bridge Trunnion Replacement Project from September 20-September 29 temporarily removed traffic recording sensors resulting in a lack of data for $1-5$ while increasing volume on $1-205$ due to the $1-5$ closure
lack of data for 1 -5 while increasing volume on 1 -205 due to the $1-5$ closure.
$\wedge$
Data sensor outages resulting in a lack of data sporadically over the course of the year

+ Construction along 1-405 in the spring impacted traffic volumes.




## Congestion

Performance indicators region－wide are compiled data from all freeway corridors．This is an overview of how the regional system is performing on the average weekday in 2019，not indicative of individual orridor performance．

The Portland region＇s freeways are experiencing SEVERE CONGESTION throughout the day， leading to EXTENSIVE DELAYS for travelers．


DVMT is the cumulative number of miles traveled by all motorists on freeways．DVMT can be used as begin to decline as the system breaks down and drivers＇ tolerance for congestion is reached．

## 民号宜

Hours of Congestion（HOC （Daily Hours）
23.0

HOC for the regional level is based on the average HOC eported for all corridors in both directions．This means that n an average weekday，the entire
11.5 hours，or almost half the day．


## Bottlenecks

Bottlenecks
2019
Source：INRIX data


Recurring bottlenecks are freeway segments where traffic congestion regularly occurs．These areas are where motorists expect and routinely experience travel delays and slow speeds．
In 2019，recurring bottlenecks impacted all of the region＇s freeways throughout the day．

BOTTLENECKS occur during ALL THREE PEAK PERIODS， CAUSING MAJOR DELAYS．

## Freight



Interstate Freight Routes
The major freight routes in Portland region are the interstate freeways: I-5, I-84, I-205 and I-405.
$1-5$ carries the highest freight volume, ranging from 11,700 -5 carries the highest freight volume, ranging from
to 20,800 trucks per day. It is the major north-south corridor for long-haul freight movement. In the northern corridor for long-haul freight movement. In the northern international Airport. In the southern corridor, it serves he Tualatin-Wilsonville industrial area
-84 has freight volumes ranging from 7,600 to 11,600 trucks per day. It is the only interstate for east-west freight movement. It serves the Troutdale industrial area, Port of Cascade Locks, Port of Hood River, and adjacent states.
-205 carries the second highest freight volume, ranging from 7,000 to 13,900 trucks per day. It also functions as a north-south corridor for long-haul freight movement. In the northern corridor, it serves the Portland airport and the Columbia industrial area. In the southern corridor, it serves the Oregon City and Clackamas industrial areas.

I-405 has freight volumes ranging from 10,400 to 10,900 trucks per day. It functions as an inter-urban freight route for the west side and US 30 industrial areas.
Freeway Freight Routes
US 26 and OR 217 are the two freeways that provide freight access to Washington County.

US 26 has freight volumes ranging from 3,300 to 7,200 trucks per day. It provides the east-west freight connection from the interstate system to western Washington County. Because of the location of high-tech industries in the Hillsboro area, freight from these industries are low-volume but high-value commodities.
US 26 is restricted from hauling hazardous material at the Vista Ridge Tunnel. Trucks carrying hazardous material are required to use OR 217 or Cornelius Pass Road

OR 217 provides a north-south freeway freight route connecting Washington County freight to US 26 and I-5. It has freight volume of 4,200 to 4,300 trucks per day.

The major freight routes are also the most congested corridors, experiencing the highest level of delays and unreliable travel time.


Commodity Flows
Regional congestion and travel delay impact businesses throughout the state, threatening national and international competitiveness. ${ }^{8}$ Buffer times in the mid-day period on the major freight routes are now consistently higher than in the AM peak period indicating ongoing issues with reliability of freight delivery to and through the Portland region throughout the day.
Many business owners report that they have changed to staggered shifts, added evening and overnight operations and are increasing operations during off-peak hours, with some delivery shifts now starting as early as 2 a.m. 9

CONGESTION AFFECTS
THE REGION'S ECONOMY, resulting in REDUCED ECONOMIC COMPETITIVENESS because
businesses are UNABLE TO RELIABLY
MOVE their goods and services.

This results in increases to labor expenses, as operator need to hire additional drivers to cover the new shifts. These late-night shifts have potential to increase driver fatigue.
The region's top commodities by value are electronics, motorized vehicles, transportation equipment, machinery, textiles and chemical products and preparations, while the extiles and chemical products and preparatuons, whel
op commodities by weight are wood products, gravel and crushed stone, nonmetallic mineral products, cerea grains and other prepared foodstuffs, fats, and oils.

TRUCKS ARE THE


MAIN LINK in the system, CONNECTING BUSINESSES throughout the state to the GLOBAL MARKETPLACE and providing the "LAST MILE" CONNECTION to
inter-modal facilities. ${ }^{10}$


Freeway high-crash hot-spots exist in areas with major system-to-system interchanges and at interchange entrance and exit ramps with high-traffic volumes.

The majority of these crashes tend to be rear-end and side-swipe crashes in stop-and-go traffic conditions caused by recurring bottlenecks.
The Safety Priority Index System (SPIS) is a method for identifying high-crash locations on state highways based
on crash frequency, rate, and severity. Specific SPIS sites are identified in the Corridor sections of this report. Freeway crash hot-spots are directly related to areas of high congestion and recurring bottleneck locations, Crashes have declined or stabilized at locations where targeted improvements have been made to address operations and safety problems.

[^2] turn, further exacerbate congestion.

Freeway crashes by day of the week 2015-2019
Source: 000


Crashes increase during rush hour 2015-2019, total crashes by time of day
source- 000 T


Crashes by type
20115-2019
Source: oо0


Freeway crash frequency is found to be higher weekdays than weekends, with the exception of US 26 EB. Friday has the highest crash frequency in the region.

Higher traffic volumes at the end of the week result in HIGHER NUMBERS OF CRASHES on average.

More cars and congestion on the road correlate to more crashes. Crashes are more than twice as likely to occur during the PM peak period. As congestion increases and reliability degrades, the number of crashes will rise proportionally.

## CRASH FREQUENCY INCREASES

during congested peak periods.

Rear-end and side-swipe crashes account for 90 percent of total crashes on the freeways; this is directly related to the stop-and-go conditions during congested peak periods.

Most REAR-END and SIDE-SWIPE CRASHES generally happen at recurring bottleneck locations.

## Incidents



Freeway incidents exist in areas with major system-tosystem interchanges and at interchange entrance and exit amps with high-traffic volumes. The majority of these ncidents tend to be disabled vehicles and hazardous debris in stop-and-go traffic conditions.

Freeway incident hot-spots are directly related to areas of high congestion and recurring bottleneck locations.
The frequency that non-crash incidents occur is higher on $\mathrm{I}-405, \mathrm{I}-5, \mathrm{I}-84$ and US 26 , which could be attributed to closely spaced interchanges and/or congestion.

Incident HOT-SPOTS are correlated to areas of high congestion and recurring bottleneck locations.

Freeway incidents (non-crash) by corridor
2015-2019, incidents per lane mile
Source.007


Incidents (non-crash) by time of day 2015-2019, total incidents by time of day


Incidents (non-crash) by type 2015-2019


Corridors with higher levels of congestion and volumes have increased incidents. The majority of the incidents per ane mile are remaining the same or slightly decreasing.

Heavily traveled major corridors tend to have HIGHER NUMBERS OF INCIDENTS on average.

During the end of the mid-day and the shoulder PM peak eriod, the number of incidents is highest.

INCIDENT FREQUENCY INCREASES during mid-day and shoulder PM peak periods, contributing to congestion and less reliable travel.

About half of the incidents occurring on the roadways are disabled vehicles, followed by hazardous debris and abandoned vehicles

The corridors with the highest number of DISABLED VEHICLES are I-5 and US 26.


The performance of each corridor is described in detail in this section．


## Introduction

$1-5$ is the major spine running north and south through the center of the region. It carries the highest number of vehicles and has direct connections to all other regional freeways except US 26 . I-5 is one of the longest corridors in the region at 26.1 miles in length and provides one of two routes over the Columbia River.
$\mathrm{I}-5$ is an international link from Canada to Mexico carrying major freight and through traffic to all of the major cities on the West Coast. Many of the long distance trips are picking up or dropping off freight from the industrial areas in the region. This long-distance connection is especially critical for the Portland region and statewide businesses who rely on the corridor to fulfill daily business needs.
$1-5$ is also one of two corridors in the region (along with $1-205$ ) included in the Regional Mobility Pricing Project. This study is considering tolling in the full corridor length of $\mathrm{I}-5$ and $\mathrm{I}-205$ in the Portland metro area. The planning and environmental analysis phase for this study is expected to continue into 2023.

## Upcoming Improvements

Active Traffic Management

- I-5 NB and SB: Capitol Highway to Corbett Ave (2023)


## Corridor Improvements

- I-5 at Rose Quarter: extending an auxiliary lane on I-5 SB to run continuously from Greeley to Morrison. A new NB auxiliary lane would be added to connect the I-84 on-ramp to the Greeley off-ramp.
- Interstate Bridge Replacement: Planning and Environmental Phase (2019-2024)
- I-5 Boone Bridge Replacement: Planning and Environmental Phase (2022-2024)


## I-5 corridor highlights

## ${ }^{0}$ E Trafic

$1-5$ is the corridor with the highest number of daily vehicle miles traveled in the Portland metro region with one of the highest daily hours of congestion. On an average weekday in 2019, the daily vehicle miles traveled in the northbound direction was $1,852,000$ and in the southbound direction was $1,839,000$.

In the northbound direction, the weekday daily average for hours of congestion was 13.5 hours and the daily weekday vehicle hours of delay was 10,200 . In the southbound direction, the weekday daily average for hours of congestion was 13.3 hours and the daily weekday vehicle hours of delay was 7,800 .

## 蛹禹 Congestion and bottlenecks

Free-flow speed is calculated to be 63.5 mph with a freeflow travel time of 25 minutes for both NB and SB. The most congested conditions occurred during the PM peak. In the NB direction, the average travel time for the corridor is 59 minutes in 2019, more than double free-flow travel time. In the SB direction, the average travel time for the corridor is 49 minutes in 2019, approximately double the free-flow travel time

I-5 has more bottlenecks than any other corridor and bottlenecks occurred in both directions throughout th AM peak period, mid-day period, and PM peak period.

In the NB direction, between the Marquam Bridge and the nterstate Bridge there are multiple recurring bottlenecks with differing durations that overlap and extend from 6:30 a.m. to 8:00 p.m. In the SB direction, the most significant recurring bottleneck between Broadway and Rosa Parks begins in the AM and extends into the mid-day and PM totaling over twelve hours of congestion during the day These extended hours of congestion in both directions pose significant problems for freight.

Calculating Reliable Travel Time on I-5

$$
\text { Distance: } 26.1 \text { miles }
$$

$$
\begin{aligned}
& \text { Distance: } 26.1 \text { miles } \\
& \text { Free-flow Travel Time: } 25 \text { minutes }
\end{aligned}
$$

Worst Case: I-5 NB during 2019 PM Peak
Average Travel Time 59 minutes

+ Buffer Travel Time 30 minutes
$=$ Reliable Travel Time 89 minutes
$1-5$ has the highest truck volumes in the Portland region. Truck volume accounts for $9 \%$ to $14 \%$ of total traffic with a daily volume of 11,700 to 20,800 trucks. The top value commodities transported on $1-5$ are transportation equipment, motorized/other vehicles (including parts) and machinery, while top tonnage commodities are woo products and prepared foodstuffs (including fats and oils.

Reliability
Reliability on the I-5 corridor is problematic in both directions and during all peak periods. When calculating the reliable travel time (the average travel time combined AM and mid-day periods are nearly double free-flow travel time and the PM peak period is more than triple free-flow travel time. Reliable travel time is consistently worse in the NB direction than the SB direction across peak periods. But travelers along l-5 must always allot a considerable amount of time to ensure they reach their destination on-time.

The majority of the total crashes on l-5 are rear-end 73 percent) and side-swipe/overtaking (19 percent), which are typical of congested conditions. The number of non-crash incidents has decreased, the majority
of such incidents are disabled vehicles (49 percent).

## $\triangle$ Safety

The crash trend is usually directly related to congestion and the reliability of the corridor. Crashes by time of day are concentrated during the mid-day through PM peak periods, which also are the most unreliable travel periods. Crashes by day of the week are highest on Fridays. of Transportation


S
Daily Vehicle Hours Delay (DVHD)
$\mathrm{I}-5$ has the highest combined DVHD in the region. DVHD on I-5 in the NB direction is significantly higher than in the SB direction, which can be attributed to the multiple, lengthy bottlenecks occurring in the AM, Mid-day, and PM hours.
 and $S B$ directions congested for more than half th and SB directions congested for more than halif the
day. The HOC are based on the longest duration bottleneck in the corridor.

1-5 NB

| 13.50 |
| :--- |
| 13.25 |



Peak Period Speed
I-5 has some of the slowest speeds across all peak periods, particularly in the PM peak period. Speeds in the NB direction are consistantly slower than in the SB direction. Mid-day speeds are slightly better than AM speeds in both directions. In the PM peak period, speeds
drop below $50 \%$ of free-flow conditions. drop below $50 \%$ of free-flow conditions.

| Speed (in mph) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Year | Free-flow | AM peak | Mid-day | PM peak |
| 1-5 NB | 2019 | 63.5 | 43.5 | 46.2 | 26.1 |
| 1-5 SB | 2019 |  | 45.7 | 48.7 | 30.3 |


| Travel time (in minutes) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Year | Free-flow | AM peak |  |  | Mid-day |  |  | PM peak |  |  |
|  |  |  | Average | Buffer ${ }^{\text {a }}$ | Total ${ }^{8}$ | Average | Buffer ${ }^{\text {A }}$ | Total ${ }^{8}$ | Average | Buffer ${ }^{\text {a }}$ | Total ${ }^{8}$ |
| $1-5 \mathrm{NB}$ | 2019 | 25 | 35.3 | 10.5 | 45.8 | 34.5 | 16.2 | 50.7 | 59.1 | 29.7 | 88.8 |
| $1-5 \mathrm{SB}$ | 2019 |  | 34.1 | 7.5 | 41.6 | 32.1 | 14.5 | 46.6 | 48.8 | 29.8 | 78.5 |

A. Buffer time is the extra time (or time cushion) that travelers should add to their average travel time to ensure on-time arrival.
B. Total or reliable travel time is the add dition of average travel t time with buffer rravel time. This is the time travelers should allot for
on-time arrival at their destination in 19 out of 20 weekdays ( 95 percent of the time).


2019 average speed (mph)


AM WEEKDAY
SB direction slows through the city center from the Interstate Bridge.
NB direction slows from the Rose Quarter to Capital Highway and from Lower Boones Ferry Road
past the I-205 interchange.

PM weekday
4:00 p.m. to 6:00 p.m


PM WEEKDAY
SB direction slows from Terwilliger to Rosa Parks Blvd and from the Boone Bridge to OR 217 .
NB direction slows from the Interstate Bridge to Capitol Highway, especially from the Interstate Bridge to the Marquam Bridge
through the Rose Quarter.

I-5 bottlenecks
I-5 corridor has the most bottlenecks (10) of any freeway in the Portland region. The amount, queue length, and duration of bottlenecks on l-5 illustrates severe congestion on this corridor, particularly in the northbound direction where mutliple bottlenecks overlap.
The most significant northbound $\mathrm{I}-5$ bottlenecks occur at the Interstate Bridge, Rose Quarter, Marquam Bridge/I-84, and Terwilliger Curves. They are caused by a variety of factors including freeway interchanges, geometry and lane drops. ${ }_{2019}^{\text {Duration of bottlenecks }}$

The most significant southbound l-5 bottlenecks occur at the Interstate Bridge, Rose Quarter, and Boone Bridge. Dverlapping queues result in more than twelve hours of congestion between Washington State and Downtown Portland

$$
\begin{aligned}
& \text { How to Read a Bottleneck Map } \\
& \text { Bottlenecks are labeled first ty their "head," or location where the } \\
& \text { congestion begins to clear, and then by their "tail," or the distance } \\
& \text { congestion extends behind the "head". } \\
& \text { Bottlenecks may have different queue lengths for peak periods } \\
& \text { and often overlap with each other during peak periods. }
\end{aligned}
$$



## NTIRsSAIEE ODOT | 2020 PORTLAND REGION TRAFFIC PERFORMANCE REPORT

## I-5 Corridor Dashboard

Crash frequency per 10th of a mile ${ }^{2015-2019}$ Source: 00 ot

## I-5 safety

I-5 had almost 7,600 crashes in the fiveyear study period. The vast majority of crashes were rear-end and side-swipe (overtaking) crashes, which mainly occurred in the PM peak commute period. These types of crashes are typically the result of congestion. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were 22 top 10 percent 2018 SPIS sites along the corridor.

Total crashes by time of day 2015-2019
source. opot

## Type of crash

2015-2019
Source: 0000


Total crashes by day of the week 2015-2019
Source: 0000



Incidents (non-crash) clearance times 2015-2019
Source: 000 ot


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day
Source: 000 T


Incidents (non-crash) by type 2015-2019
Source: 000 T


The average time to clear an incident on I-5 is approximately 21 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. The major non-crash incident areas on l-5 are between the Marquam Bridge and Fremont Bridge, and the Interstate Bridge.

More cars and congestion on the road correlate to more incidents. There is a higher number of incidents occurring in the late mid-day and PM peak period, exacerbating congestion and unreliability in the corridor.

Disabled vehicle incidents account for 49 percent of non-crash incidents on I-5. This is followed by hazardous debris (18\%) and abandoned vehicles (8\%).


## NTIEssiait ODOT｜ 2020 PORTLAND REGION TRAFFIC PERFORMANCE REPORT

## I－84 Corridor Dashboard

 of Transportation

Recent／Current Improvements
Active Traffic Management
－I－84 WB and EB：I－5 to I－205（completed in 2018） Road Treatments
－I－84 EB \＆WB：Install shoulder rumble strips（2021）

## Introduction

I－84 is the only interstate east－west route in the Portland region connecting downtown Portland to the Columbia River Gorge，Central and Eastern Oregon，and other states east of Oregon．1－84 is the primary access point to the regional job－rich lands of the Columbia Corridor．The Columbia Corridor is the single largest industrial area in the state of Oregon．It covers 22，600 acres，or 28 square miles．The Corridor stretches 18.1 miles along the Columbia River from the Rivergate ndustrial District on the Willamette River to the Troutdale Industrial District on the Sandy River．
The Blue，Red，and Green light rail lines run adjacent to I－84 between I－5 and I－205，and the Union Pacific Railroad parallels the corridor，providing alternative travel modes for goods and people．

Upcoming Improvements

## Paving Projects

－I－84 EB \＆WB：Fairview to Marine Drive，including a
signal upgrade at NE 238th Ave（2022）
－I－84 EB \＆WB：between I－205 and 181st（2022）


## FREIGHT MOBILITY

－-84 is a primary east－west interstate freight route with the third highest truck volume in the Portland region．Truck volume on I－84 accounts for approximately $5 \%$ to $21 \%$ of total traffic，with a daily volume of 7,600 to 11,600 trucks．The top value commodities transported on l－84 are machinerv， electronics and other electrical equipment and components，and office equipment．The top tonnag components，and office equipment．The top tonnage products．

## I－84 corridor highlights

## 回昌 Traffic

I－84 is a congested corridor wth an average of twelve hours of congestion in both directions．On an average weekday in 2019，the daily vehicle miles traveled in the eastbound direction was $1,061,000$ and in the westbound direction was $1,007,000$
n the eastbound direction，the weekday daily average for hours of congestion was 9.5 hours and the daily weekday vehicle hours of delay was 1,400 ．In the westbound direction，the weekday daily average for hours of congestion was 12.8 ．hours and the daily weekday vehicle hours of delay was 3,900 ．

路 Congestion and bottlenecks

Free－flow speed is calculated to be 63.3 mph with a free flow travel time of 17 minutes for both EB and WB． The segment of I－84 between I－5 and I－205 experiences the most congestion．In this segment，congestion is directional，with WB congestion occurring in the AM and PM and EB congestion occurring in the PM only．The most congested conditions in 2019 occurred on I－84 EB from 10：30 a．m．to 8：00 p．m．（9．5 hours）．

In the PM peak，the average travel time for the corridor was 24 minutes for both directions．There is a bottleneck on 1－84 WB from 47th Ave that extends to I－205 between 6：15 a．m．and 10：30 a．m．and a second bottleneck on I－84 WB from I－5 to 47th Ave between 6：30 a．m．and 7：00 p．m．

## Reliability

Reliability on the I－84 corridor is a problem throughout al peak periods．In the westbound direction，average travel times are consistently higher than free－flow travel times with a buffer time ranging from six minutes to more than twelve minutes．In the eastbound direction，congestion mainly occurs in the PM peak．As reliability degrades throughout the day，it affects drivers＇ability to reach their destinations on time．

Calculating Reliable Travel Time on I－84 Distance： 18.1 miles

$$
\text { Free-flow Travel Time: } 17.0 \text { minutes }
$$

$$
\text { Worst Case: I-84 WB during } 2019 \text { PM Peak }
$$

$$
\text { Average Travel Time } 25 \text { minutes }
$$

$$
+ \text { Buffer Travel Time } 12 \text { minutes }
$$

$$
\text { = Reliable Travel Time } 37 \text { minutes }
$$

## APe8 Safety

The crash trend is usually directly related to congestion and the reliability of the corridor．Crashes by time of day are concentrated during the AM and PM peak periods， which also are the most unreliable travel periods．Crashes by day of the week and by direction show the majority of crashes occur in the WB direction and at the end of the
work week．The majority of crashes on I－84 are rear－end 74 percent）and side－swipe／overtaking（16 percent），which are typical of congested conditions．The number of non－ crash incidents is high，with the majority of such incidents on I－84 being disabled vehicles（ 56 percent）．


Daily Vehicle Hours Delay (DVHD) I-84 DVHD demonstrates how the location of I-84 relative to the city center impacts traffic. DVHD on $1-84$ in the WB direction is more than double that of the EB direction.

| $\mathbf{1 - 8 4}$ EB | 1,440 |
| :--- | :--- |
| $\mathbf{1 - 8 4 ~ W B}$ | 3,880 |

ค用
Hours of Congestion (HOC)
1-84 HOC illustrate severe congestion in the corridor, with almost half the day congested in both directions.

| I-84 EB | 9.50 |
| :---: | :---: |
| I-84 WB | 12.75 |



## $\square$

Peak Period Speed
Peak period speed on $1-84$ varies depending on direction. In the AM, as motorists head into Portland, peak period EB. In the PM, peak period speed is equally slow in either direction. While traffic east of I22nd Ave is usually freeflowing, traffic in between the $1-5$ interchange and $\mathrm{I}-205$ interchange is severely congested for several hours of the day.


2019 average speed (mph)
$\underset{\text { 7:00 a.m. to o } 9: 00}{\text { A. a.m. }}$


I-84 bottlenecks
$1-84$ bottlenecks are caused by junctions with or queue extensions from other facilities (I-5 and I-205). As the main connector between Eastern Oregon and Downtown Portland, bottlenecks exist near the city center at all times of the day as motorists commute.

At l-5, bottlenecks exist WB across all peak periods, extending back to the I -205 interchange in the AM peak period, and in the EB direction during the mid-day and PM peak periods.

| 2019 |
| :--- |
| Source |

$0=$ morning bottleneck
$0=$ evening bottleneck
...". = = morning freeway area impacted
"..". $=$ evenning freeway area impacted

At I-205, queues extend back onto I-84 due to merge and weave capacity issues for I-84 EB to I-205 NB and I-84 WB to I-205 NB
A single bottleneck EB from Halsey to 33rd Ave is caused by a confluence of on- and off-ramps and not by freeway-tofreeway interchanges.

## How to Read a Bottleneck Map

Bottlenecks are labeled first by their "head," or location where the congestion begins to clear, and then by their "tail," or the distance ongestion extends behind the "head".
drecks may have different queue iengths for peak periods and otten overlap with each other during peak periods.

84

I-84 safety
-84 had slightly more than 2,000 crashes in the five-year study period. The vast majority of crashes were rearend and side-swipe (overtaking) crashes, which mainly occurred in the AM and PM peak commute period. These types of crashes are typically the result of congestion. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were ten top 10 percent 2018 SPIS sites along the corridor, most of which were located in the section between I-5 and I-205 where congestion is highest.

Total crashes by time of day


Crash frequency per 10th of a mile 2015-2019
Source: 000T


Incidents (non-crash) clearance times 2015-2019
Source: 0 oot


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day
Source: ooot


Incidents (non-crash) by type 2015-2019
Source: 000 ot


The average time to clear an incident on I-84 is approximately 24 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. The major non-crash incident areas on I-84 are near the l-5 interchange and between 12th Avenue and 33rd Avenue

More cars and congestion on the road correlate to more incidents. There is a higher number of incidents late mid-day to the PM peak period.

Disabled vehicle incidents account for 56 percent of non-crash incidents on I-84. This is followed by hazardous debris (11\%) and abandoned vehicles (12\%).


205
I－205 Corridor Dashboard of Transportation


Recent／Current Improvements
Active Traffic Management
－I－205 NB and SB：Glenn Jackson Bridge to Johnson
Creek Boulevard（2019）
－I－205 NB and SB：I－5 to OR 213 （2020）
－I－205 NB and SB：Bus on Shoulder Pilot（2020） Auxiliary Lane
－I－205 NB：I－84 EB entrance to the Killingsworth Street exit（2019）
－I－205 SB：I－84 EB entrance to the Washington Street／ Stark Street exit（2019）
－I－205 NB：Powell Boulevard entrance to the I－84 WB entrance（2019）
－I－205 NB：Sunrise to Sunnybrook（2020）

## Introduction

I－205 is one of the longest corridors in the region，at 26.5 miles in length，providing one of two routes over the Columbia River in the Portland metro region．1－205 continues north and connects back to l－5 near Salmon Creek， Washington，connecting the East Portland metro area to the Tualatin／Sherwood industrial area，Clackamas industrial area，and Portland International Airport，making it a corridor of economic importance in the Portland region and Oregon． I－205 from the Willamette River near Oregon City to l－5 was constructed as a four－lane interstate．Consistent with regional planning，ODOT has widened the freeway to six lanes from $1-5$ to Stafford Road．The only remaining four－lane section is from Stafford Road to OR 99E．A project is planned to widen this section to six lanes．
The Red and Green light rail lines run adjacent to I－205 from Gateway Transit Station to the airport and from Gateway to Clackamas Town Center，respectively．
$\mathrm{I}-205$ is one of two corridors in the region（along with l－5） included in the Regional Mobility Pricing Project．In addition， the I－205 Toll project is currently in an environmental phase， considering variable rate tolling of all lanes on I－205 near the Abernethy Bridge．The planning and environmental analysis phase for this project is expected to conclude in 2022.

## Upcoming Improvements

Tolling
－I－205 Toll Project：Planning and Environmental Phase （2020－2022）
Infrastructure Improvements
－I－205 Improvement Project：Stafford Road to OR 213， including widening and seismic improvements to the Abernethy Bridge（design underway）


## FREIGHT RELIABILITY

1－205 is a primary north－south interstate freight route providing an east－side alternative to $1-5$ ． $1-205$ carries the second highest truck volume in the Portland region with a daily volume of 7,000 to 14,000 trucks．This accounts for about $8 \%$ of total traffic on I－205．The top value commodities transported are motorized and other vehicles（including parts）．The top tonnage commodities transported are wood products and gravel and crushed
stone． stone．

## I－205 corridor highlights

## 圆白 Traffic

On an average weekday in 2019，the daily vehicle miles traveled in the northbound direction was 1，751，000 and in the southbound direction was $1,813,000$ ．
n the northbound direction，the weekday daily average for hours of congestion was 10.8 hours and the daily weekday vehicle hours of delay was 7,900 ．In the southbound direction，the weekday daily average for hours of congestion was 7.5 hours and the daily weekday vehicle hours of delay was 3,800 ．

服白 Congestion and bottlenecks

Free－flow speed is calculated to be 61 mph with a free－flow travel time of 25 minutes for both NB and SB directions． The most congested conditions occurred during the PM peak，with the average speed in the NB direction among the lowest in the region．In the NB direction，the average travel time for the corridor is always longer than free－flow travel time，and more than double in the PM peak．In the SB direction，the average travel time for the corridor is always longer than free－flow travel time．

The most severe recurring bottleneck on I－205 NB was between Division and Sunnyside，lasting over 10 hours over the AM and PM peak periods．In the PM peak，the ver AM and M peak periods．In GM peak，the Bridge，resulting in a queue that is over 11 miles long．

In the SB direction，the most significant recurring bottleneck extended from Powell Boulevard to the Airport Way．This bottleneck occurred from 2：30 p．m．to 6：30 p．m

Reliability

Reliability on I－205 remains an issue apart from recently improved sections of the corridor．For both directions of $1-205$ in the AM peak and mid－day，the reliable travel time hovers around forty minutes．For the PM peak，reliable travel time in the northbound direction is nearly eighty－ seven minutes，or more than triple free－flow travel time． In the southbound direction，reliable travel time in the PM peak is nearly fifty－seven minutes，or slightly more than double free－flow travel time．Travelers in this corridor have to plan ahead to ensure on time arrival at their destinations due to congestion．

Calculating Reliable Travel Time on I－205

$$
\begin{aligned}
& \text { Distance: } 26.5 \text { miles } \\
& \text { Free-flow Travel Time: } 25 \text { minutes }
\end{aligned}
$$

Worst Case：I－205 NB during 2019 PM Peak

$$
\text { Average Travel Time } 54 \text { minutes }
$$

＋Buffer Travel Time 26 minutes
$=$ Reliable Travel Time 81 minutes

## $\triangle$ Safety

Crashes by time of day are concentrated during the PM peak period，which is also the most unreliable travel period．Crashes by day of the week and direction show more crashes occur in the NB direction and at the end of the work week．The majority of total crashes on I－205
are rear－end（ 70 percent）and side－swipe／overtaking （16 percent），which are typical of congested conditions． Disabled vehicles and hazardous debris account for a majority of non－crash incidents on I－205（36 percent and 29 percent respectively）．


Peak Period Speed
I-205 NB in the PM Peak has one of the lowest average speeds in the regio indicative of persistent severage speeds in the region indicative of persistent severe
congestion, with speeds in AM and Mid-day ranging from slow to congested. In the SB direction, Mid-day speeds are slightly better than the AM Peak, and slow down in the PM Peak.


| Speed (in mph) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Year | Free-flow | AM peak | Mid-day | PM peak |
| 1-205 NB | 2019 | 63.5 | 52.5 | 52.1 | 29.2 |
| $1-205$ SB | 2019 |  | 50.2 | 55.3 | 43.0 |

## NNTERSAAIE ODOT | 2020 PORTLAND REGION TRAFFIC PERFORMANCE REPORT <br> I-205 Corridor Dashboard

2019 average speed (mph)


I-205 bottlenecks
I-205 has six primary bottlenecks, three in each direction. Mutltiple bottlenecks are opposing by time of day and direction, such as AM congestion in the southbound direction across the Abernethy Bridge and PM congestion in the northbound direction across the Abernethy Bridge.
The NB I-205 bottlenecks are at Glenn Jackson Bridge, Division/Powell and Abernethy Bridge. The Glenn Jackson Bridge is congested for seven hours and reaches back to Sunnyside, representing the longest duration and queue length in the northbound direction.
Duration of bottlenecks 2019


205

1-205 safety
1 -205 had nearly 6,000 crashes in the five-year study period. The vast majority of crashes were rear-end and side-swipe (overtaking) crashes, which mainly occur in the AM and PM peak commute periods. These types of crashes are typically the result of congestion. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were 16 top 10 percent 2018 SPIS sites along the corridor

Total crashes by time of day 2015-2019


Type of crash
2015-2019
Source: 000T


Total crashes by day of the week 2015-2019
Source: 000


## Crash frequency per 10th of a mile

Source: ODOT


Incidents (non-crash) clearance times 2015-2019


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day


The average time to clear an incident on I-205 is approximately 44 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. The major non-crash incident areas on I-205 include the Glenn Jackson Bridge and the I-84 interchange.

More cars and congestion on the road correlate to more incidents. There is a higher number of incidents happening in the mid-day and PM peak period exacerbating congestion in the corridor.

Disabled vehicle incidents account for 36 percent of non-crash incidents on I-205. This is followed by hazardous debris (29\%) and abandoned vehicles (12\%).

Incidents (non-crash) by type 2015-2019
Source: 000 T
 of Transportation

## Introduction

Located on the west side of the Willamette River in Portland，I－405 is the west－side inner loop to I－5．It is the shortest interstate freeway in Portland with total length of 4.2 miles in the densest part of downtown．For the purposes of this report，the study with $1-5$ ．Most of the freeway was built below－grade with sixt Most overhead structures spanning the freeway l－405 has eight interchanges which result in very short and closely spaced merge and diverge areas．Due to these constraints，the posted speed is 50 mph ，which is $5-15 \mathrm{mph}$ below other corridors in the Portland region． the Portland region．
$1-405$ connects I－84，US 26 ，US 30 and I－5．I－405 is heavily affected by traffic on I－5 and US 26 ，and as a result，is regularly congested．This effect is felt
 route for exampe，those traveling from Hillsboro to Portland internal Airport

The corridor has the highest number of crashes per mile in the Portland region；this is caused by high volumes of traffic weaving in short distances．Due to the limited right－of－way and constrained geometry， congestion and safety improvements are challenging．

## Infrastructure Investments

－I－405 NB and SB：Repair or replace freeway and bridge joints at ramps（2020）
－I－405 NB and SB：Flanders Crossing（pedestrian／bike bridge）across I－405（2021）

## FREIGHT MOBILITY



405 is an urban interstate connector，linking l－5， US 26 ，and US 30 ．Truck volume accounts for approximately $8 \%$ to $9 \%$ of total traffic on $1-405$ ，with a daily volume of 10,400 to 10,900 trucks．The top value commodities transported on I－405 are textiles， leather，and articles of textiles or leather，as well as motorized and other vehicles（including parts）．The top tonnage commodities transported are cereal grains and gravel and crushed stone．

## I－405 corridor highlights

## 回白 Traffic

I－405 is a severely congested corridor with extremely high traffic volumes despite the short length of the corridor． On an average weekday in 2019，the daily vehicle miles traveled in the northbound direction was 163,000 and in the southbound direction was 174,000 ．

In the northbound direction，the weekday daily average for hours of congestion was 5.5 hours and the daily weekday vehicle hours of delay was 1,000 ．In he southbound direction，the weekday daily average for hours of congestion was 7.5 hours and the daily weekday vehicle hours of delay was 900 ．

明品 Congestion and bottlenecks

Free－flow speed is calculated to be 53.5 mph with a free－ flow travel time of about three minutes for both NB and SB． The most congested conditions in 2019 occurred during the PM peak．In the PM peak，the average travel time for the corridor in the NB direction is over 13 minutes and the corndor in the SB direction is dre than 10 ． than triple the free－fow thavel Because this is a short corridor，the seem significant，but l－405 has the slowest speed among
all freeway corridors．The average speed in the PM peak drops to $21-24 \mathrm{mph}$ in both directions
In the NB direction，the most severe recurring bottleneck is at the Fremont Bridge，extending to the US 26 junction． This bottleneck lasts from 1：45 p．m．to 7：00 p．m．In the SB direction，the most significant recurring bottleneck extends from the south 1.5 junction to the Fremont Bridge．This bottleneck lasts from 7：15 am to 10：15 am and again from 2：00 p．m．to 6：45 p．m．

Reliability

Reliability on the $1-405$ corridor is an issue In the southbound direction，average travel time and buffer time remain elevated in the AM and Mid－day，culminating in nearly triple free－flow travel time in the PM Peak．In the northbound direction，reliable travel time increases throughout the day，with AM Peak close to free－flow，Mid day slightly worse，and the PM Peak reliable travel time more than quadruple free－flow travel time．Travelers on 1 －405 face very unreliable travel time and must plan ahead to make it to their destinations on time．

Calculating Reliable Travel Time on I－405 Distance： 2.9 miles

$$
\begin{aligned}
& \text { Distance: } 2.9 \text { miles } \\
& \text { Free-flow Travel Time: } 3.1 \text { minutes }
\end{aligned}
$$

Worst Case：I－405 NB during 2019 PM Peak

$$
\text { Average Travel Time } 8 \text { minutes }
$$

+ Buffer Travel Time 5 minutes
$=$ Reliable Travel Time 13 minutes


## $\triangle$ Safety

Crashes by time of day are concentrated during the PM peak period，which is the most unreliable travel period．Crashes by day of the week and direction occur more regularly in the NB direction and near the end of the work week．The majority of
the total crashes on I－405 are rear－end（68 percent）and side－ swipe（overtaking）（26 percent），which are typical of congested conditions．
Daily Vehicle Hours Delay (DVHD) -405 has a DVHD comparable to other corridors given the free-flow travel time of the short corrido The corridor.

| I-405 NB | 970 |
| :--- | :--- |
| I-405 SB | 930 |

日回
Hours of Congestion (HOC)
I-405 HOC are higher in the SB direction due to degraded travel time throughout the day. In the PM peak, the HOC are worse in the NB direction.

Peak Period Speed
I-405 has the slowest speeds across the PM Peak period in the region. Speeds in the NB direction worsen throughout the day. In the SB direction speeds are
consistently slow throughout AM and mid-day peak periods, with the PM Peak severely congested.

2019 average speed (mph)


AM WEEKDAY
SB direction slows from US 26 (exit to Ross Island) to the Fremont Bridge.
NB direction slows from US 26 to the Marquam Bridge and at the Fremont Bridge.


PM WEEKDAY
SB direction slows from $1-5$ to the Fremont Bridge. NB direction slows from the Fremont Bridge to $\mathrm{I}-5$.

## I-405 bottlenecks

The l-405 corridor is consistantly congested due to the system interchanges at I-5 and US 26 . In fact, I-405 is congested on the average weekday from 3:15PM-6:15PM for motorists traveling on most segments of the corridor in either direction.
Northbound bottlenecks exist primarily in the PM, with the area from the US 26 merge to the I-5 diverge congested throughout the mid-day and into the PM peak period. A bottleneck recurs at various times during the day from the I-5 merge to the US 26 diverge.

Duration of bottlenecks
2019
source:

## -405 SB bottlenecks also exist primarily in the PM, with

 merge points to US 26, the Ross Island Bridge, I-84, and I-5 consistantly creating bottlenecks. The area between the I-5 diverge and US 26 merge is also a bottleneck in the AM as traffic moves through and to Downtown Portland.
$0=$ morning bottleneck
$0=$ evening bottleneck


405
ODOT | 2020 PORTLAND REGION TRAFFIC PERFORMANCE REPORT
|-405 Corridor Dashboard

1-405 safety
l-405 had a total of 907 crashes in the five-year study period. The vast majority of crashes were rear-end and side-swipe (overtaking) crashes, which mainly occur in the PM peak commute period. These types of crashes are typically the result of congestion. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were four top 10 percent 2018 SPIS sites along the corridor.

Total crashes by time of day 2015-2019
Source: 000T


Type of crash
2015-2019
Source: 000T


Total crashes by day of the week 2015-2019
Source: 0007
$\underset{\text { 2015-2019 }}{\text { Crash frequency per 10th of a mile }}$


Incidents (non-crash) clearance times 2015-2019


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day


Incidents (non-crash) by type $2015-2019$
Source: 0 00T


The average time to clear an incident on I-405 is approximately 26 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. The major non-crash incident area on I-405 is on the west end of the Fremont Bridge near the US 30 interchange.

More cars on the road correlates to more incidents. There is a higher number of incidents happening in the PM peak period, exacerbating congestion in the corridor.

Disabled vehicle incidents account for 50 percent of non-crash incidents on I-405, while hazardous debris accounts for 15 percent and abandoned vehicles account for 6 percent of such incidents in the corridor.
 of Transportation

Introduction
US 26 provides the only major east－west route from the Willamette River and downtown Portland to Beaverton，Hillsboro and the Oregon Coast．The corridor is approximately 18.8 miles from l－405 to the Dersham Road interchange．
US 26 is severely congested near the l－405 interchange and Vista Ridge Tunnel．The Vista Ridge Tunnel is the busiest tunnel in Oregon．The tunnel is closed to hazardous materials，forcing trucks hauling these materials to other routes．This tunnel is a major bottleneck for the west side of the Portland Metropolitan area，a major economic engine of the region．
The Silicon Forest is the nickname for the concentration of high－tech companies located in Hillsboro and Beaverton．In 2017，Washington County had the highest share of jobs directly supported by exports，representing 11 percent of the workforce which equates to more than 41,000 employees．${ }^{11}$ Additionally，there has been 5.1 percent population growth ${ }^{12}$ in the last five years and 11 percent employment growth，${ }^{13}$ resulting in increasing pressure on US 26 and the surrounding transportation system． The Blue and Red light rail lines run adjacent to US 26 from downtown Portland to the Sunset Transit Station．
ODOT and Metro are co－managing the Westside Multimodal Improvements Study to identify opportunities to improve connections between Hillsboro＇s Silicon Forest，Northern Washington County＇s agricultural areas and the Portland Central City，I－5 and I－84，Port of Portland marine terminals， rail facilities，and Portland International Airport．

US 26 is the primary east－west connector to l－405 and 1－5 from the west side．Trucks account for approximately $4 \%$ to $8 \%$ of the total daily traffic volume on US 26 ， averaging 3,300 to 7,200 trucks per day．The top value commodities transported on US 26 are electronic and other electrical equipment and components， dfice equipment machinery and components，and and preparations．The top tonna co commodities transported include gravel and crushed stone and transported include grave and crushed stone and wood products．
oregon department of transportation

## US 26 corridor highlights

## © Ee Traffic

congested due to the Vista Ridge Tunne US 26 is severely congested due to the Vista Ridge Tunnel in 2019，the daily vehicle miles traveled in the eastbound direction was $1,035,000$ and in the westbound direction was $1,118,000$ ．

目自 Congestion and bottlenecks Free－flow speed is calculated to be 62.5 mph with a free flow travel time of 18 minutes for both EB and WB．
The most congested conditions in 2019 occurred in the EB direction in the PM peak．In the EB direction，the average travel time for the corridor is 28 minutes，which is ten minutes above free－flow travel time．In the WB direction，the average PM peak travel time for the corridor is reasonable，at 21.5 minutes or just about three minutes above free－flow travel time．

In the eastbound direction，the weekday daily averag for hours of congestion was 14.3 hours and the daily weekday vehicle hours of delay was 5,500 ．In the westbound direction，the weekday daily average for hours of congestion was 9.8 hours and the daily weekday vehicle hours of delay was 800 ．

In the EB direction，the most severe recurring bottleneck is from the Vista Ridge Tunnel to OR 217．This bottleneck occurs in AM，mid－day and PM peak periods from 6：00 a．m．to 8：15 p．m．for a 14．25－hour period．In the WB direction，there is a bottleneck that extends from Canyon Rd back to the Vista Ridge Tunnel．This bottleneck occurs during the AM ，mid－day，and PM peak periods but is not ontinuous throughout the day，totaling almost 10 hours over three time periods．

Reliability
Reliability on US 26 is an issue，particularly in the EB direction．For both directions of US 26 in the AM peak， mid－day，and PM peak，the average travel time is above free－flow travel time．Average travel time in the AM and PM peak in the EB direction is an average of 10 minutes longer than free－flow travel time and buffer times at or above 10 minutes．This means trips in the AM and PM peak are taking longer．The WB direction is much more reliable，with reliable travel time never exceeding 6 minutes longer than free－flow travel time．

Calculating Reliable Travel Time on US 26 Distance： 18.8 miles

$$
\text { Free-flow Travel Time: } 18 \text { minutes }
$$

Worst Case：US 26 EB during 2019 PM Peak
Average Travel Time 28 minutes

+ Buffer Travel Time 13 minutes
$=$ Reliable Travel Time 41 minutes


## © ${ }^{\text {P2 }}$ Safety

Crashes by time of day are concentrated in the PM peak， which is the most unreliable travel period．Crashes by day of the week and direction demonstrate that the majority of crashes occur in the EB direction，and crashes are consistently high all days of the week except Sunday and

Monday．The majority of the total crashes on US 26 are ear－end（ 77 percent）and side－swipe／overtaking 13 percent），which are typical of congested conditions． he number of non－crash incidents on US 26 remains very high and most involve disabled vehicles（ 60 percent）．

## Reliability

Peak Period Travel Times and Buffer Time
US 26 has a high DVMT, with almost ten percent more miles traveled in the WB direction than the EB direction. The substantial difference is likely due to raffic rerouting to the local system to avoid bottlenecks on US 26 EB.

| US $\mathbf{2 6}$ EB | $1,035,000$ |
| :---: | :--- |
| US 26 WB | $1,118,000$ |

Daily Vehicle Hours Delay (DVHD) US 26 has drastically different DVHD depending on direction. In the EB direction, DVHD is hish die the recurring bottleneck leading to the Vista Ridge Tunnel. US 26 WB has the lowest DVHD in the region.

US 26 EB
US 26 WB

$$
790
$$

园宽
Hours of Congestion (HOC) US 26 HOC demonstrate the severe congestion experienced on the corridor, particuarly in the EB


Mid-day
Mid-day travel time improved from the AM Peak in both directions, with the largest decrease being in the EB direction. Despite improvement
compared to the AM Peak, reliable compared tro the AM Peak, reliable longer than free-flow.

Travel time (in minutes)

| Travel time (in minutes) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Year | Free-flow | AM peak |  |  | Mid-day |  |  | PM peak |  |  |
|  |  |  | Average | Buffer ${ }^{\text {a }}$ | Total ${ }^{\text {B }}$ | Average | Buffer ${ }^{\text {A }}$ | Total ${ }^{\text {B }}$ | Average | Buffer ${ }^{\text {a }}$ | Total ${ }^{6}$ |
| US 26 EB | 2019 | 18 | 27.8 | 9.3 | 37.1 | 22.7 | 6.6 | 29.3 | 28.1 | 13.1 | 41.2 |
| US 26 WB | 2019 |  | 19.6 | 2.2 | 21.8 | 19.1 | 1.1 | 20.2 | 21.5 | 3.1 | 24.6 |

A. Buffer time is the extra time (or time cushion) that travelers should add to their average travel time to ensure on-time arrival.
B. Total or reliable travel time is the addition of average travel time with buffer travel time. This is the time travelers should allot for
on-time arrival at their destination in 19 out of 20 weekdays (95 percent of the time).


Speed (in mph)
US 26 EB
US 26 WB

| Year | Free-flo | AM peak | Mid-day | PM peak |
| :---: | :---: | :---: | :---: | :---: |
| 2019 | 62.5 | 40.6 | 49.8 | 40.2 |
| 2019 |  | 57.6 | 59.1 | 52.5 |

, a slightly high travel time and direction, a slightly high travel time and
buffer time result in a reliable travel time approximately four minutes longer than free-flow.
AM
high level time and buffer time indica direction, with congestion in the EB direction, with an average travel time
about ten minutes longer than free-flow travel time and a reliable travel time travel time and a reliable travel
double that of free-flow. In the WB

M
M travel time and buffer time show congestion in both directions of the orridor. In the EB direction, a buffer ime of over thirteen minutes results double free-flow travel time. In the WB direction, reliable travel time is more direction, reliable travel time is more

$\qquad$

2019 average speed (mph)


US 26 bottlenecks

Bottlenecks on US 26 exist in both directions and during all peak periods east of Hillsboro as motorists come from and go to Downtown Portland.
The primary bottleneck on US 26 is EB at the Vista Ridge tunnel//-405 junction. This is backed up for more than 16 hours a day and to as far west as Cornell in the AM. An overlapping bottleneck occurs in the PM from 185th to Cedar Hills, with a brief break in congestion between Cedar Hills and OR 217.
 Duration of bottlenecks 2019

The primary WB bottleneck is from Canyon Rd to the Vista Ridge Tunnel//-405 merge as motorists climb the Sylvan hil and occurs in the AM, mid-day, and PM peak periods.

## How to Read a Bottleneck Map

Bottlenecks are labeled first by their "head," or location where the congestion begins to clear, and then by their "tail," or the distance congestion extends behind the "head",
Bottlenecks may have different queue lengths for peak periods and often overlap with each other during peak periods.


US 26 safety

US 26 had approximately 2,800 crashes in the five-year study period. The vast majority of crashes were rear-end and side-swipe (overtaking) crashes, which mainly occur in he PM peak period. These types of crashes are typically the result of congestion, which is clearly reflected in the higher crash frequency in the EB direction. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were eight top 10 percent 2018 SPIS sites along the corridor.


Crash frequency per 10th of a mile 2015-2019


Incidents (non-crash) clearance times 2015-2019


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day


The average time to clear an incident on US 26 is approximately 13 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. The major non-crash incident areas on US 26 are the Zoo interchange, Sylvan interchange and the Vista Ridge Tunnel.

More cars and congestion on the road correlate to more incidents. The highest number of incidents is in the mid-day, but incidents are elevated throughout the AM and PM peak periods as well, exacerbating congestion in the corridor all day.

Disabled vehicle incidents account for 60 percent of non-crash incidents on US 26. This is followed by abandoned vehicles (13\%) and hazardous debris (10\%).

Incidents (non-crash) by type 2015-2019
Source: 000 ot



Recent／Current Improvements Auxiliary lanes

The following project on I－5 helped alleviate congestion and queuing that would spill onto OR 217：
－I－5 SB：Lower Boones Ferry Road to I－205 Exit （completed in 2018，complementing the Carma Drive to Lower Boones Ferry Road auxiliary lane completed in 2012）

## Road Treatments

－US 26 WB：High Friction Surface Treatment to address road departure crashes on the OR 217 NB to US 26 WB Connection（2021）

## Introduction

OR 217 serves as a connection between US 26 （Sunset Highway）and I－5．OR 217 is approximately 7.0 miles in length．It connects the cities of Tualatin， Tigard，Beaverton and Hillsboro．
OR 217 has nine closely spaced interchanges，which contribute to conflicts between entering and exiting traffic，particularly during peak commute times．To address these conflicts，ODOT has planned a series of auxiliary lanes for the corridor to improve safety and operations in merging and weaving areas．

## Upcoming Improvements

## Auxiliary lanes

－OR 217 SB：auxiliary lane extension from
Beaverton－Hillsdale Highway to OR 99W with a collector－distributor road from Allen Boulevard to Denney Road（expected 2022）
－OR 217 NB：auxiliary lane extension from OR 99W to Scholls－Ferry Road（expected 2022）


## FREIGHT MOBILITY

Because of the hazardous material restriction on US 26 at the Vista Ridge Tunnel，OR 217 is the west side connector for US 26 to I－5 SB．Trucks account for approximately $4 \%$ of the daily traffic volume on OR 217 with an average of about 4,200 to 4,300 trucks per day． The top value commodities transported on OR 217 are prepared foodstuffs，fats and oils，motorized and other vehicles，and electronic and other electrical equipment venicles，and electronic and other electrical equil
and components．The top tonnage commodities transported include gravel and crushed stone，wood products，and nonmetallic mineral products．

## OR 217 corridor highlights

## 国 Traffic

OR 217 is a congested corridor with persistent congestion in the AM and PM peak periods．On an average weekday in 2019，the daily vehicle miles traveled in the northbound direction was 163,000 and in the southbound direction was 174,000 ．

且 Congestion and bottlenecks
Free－flow speed is calculated to be 60 mph with a free－flow travel time of seven minutes for both NB and SB
OR 217 has the lowest PM peak speed when looking at both directions of travel．In the NB and SB directions，the average PM peak travel time is 13 minutes in 2019，almost double free－flow travel time
Only two bottlenecks occur in the NB direction of OR 217 and both overlap for more than three miles．An AM peak bottleneck forms at Allen and extends to the I－5 merge．
n the northbound direction，the weekday daily average for hours of congestion was 6.0 hours and the daily weekday vehicle hours of delay was 1,400 ．In the westbound direction，the weekday daily average for hours of congestion was 9.75 hours and the daily weekday vehicle hours of delay was 1,700

A slightly shorter in queue length bottleneck occurs in the PM peak and forms at Denney Road and also ends at the I－5 merge
The SB direction has twice as many bottlenecks with most occurring only during peak periods．For example，an AM peak bottleneck from OR 99W to Walker creates congestion on over half the corridor while two PM peak bottlenecks exist near the US 26 interchange and I－5 interchange．A bottleneck between Hall Boulevard and Walker Road persists for over 7 hours in the mid－day and PM peaks．

Reliability
Reliability on OR 217 is an issue in both the AM and PM peak periods．When calculating the reliable travel time（the average travel time combined with the buffer time needed to ensure on－time arrival），the AM peak period reliable travel time is more than double free－flow travel time and the PM peak period reliable travel time is nearly triple free－flow travel time．Reliable travel time is consistently better in the NB direction than in the SB direction，although motorists traveling along any portion of the corridor must allot extra time to esnure they reach their destination on－time．

Calculating Reliable Travel Time on OR 217 Distance： 7.0 miles

$$
\begin{aligned}
& \text { Distance: T.Umies } \\
& \text { Free-flow Travel Time: } 7.1 \text { minutes }
\end{aligned}
$$

Worst Case：OR 217 SB during 2019 PM Peak
Average Travel Time 13 minutes

+ Buffer Travel Time 7 minutes
$=$ Reliable Travel Time 20 minutes


## © Safety

More crashes occur on OR 217 SB than NB．Crashes by time of day are concentrated during AM and PM peak periods， when travel is the most unreliable．The majority of the total crashes on OR 217 are rear－end（ 81 percent）and side－swipe／
overtaking（ 13 percent），which are typical of congested conditions．The most frequent non－crash incidents on OR 217 are disabled vehicles and hazardous debris．

## 217 <br> ODOT | 2020 PORTLAND REGION TRAFFIC PERFORMANCE REPORT

 of Transportation

| Travel time (in minutes) |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Year | Free-flow | AM peak |  |  | Mid-day |  |  | PM peak |  |  |
|  |  |  | Average | Buffer ${ }^{\text {a }}$ | Total ${ }^{8}$ | Average | Buffer ${ }^{\text {A }}$ | Total ${ }^{8}$ | Average | Buffer ${ }^{\text {A }}$ | Total ${ }^{18}$ |
| OR 217 NB | 2019 | 7.1 | 10.2 | 4.9 | 15.1 | 7.9 | 1.5 | 9.4 | 13.4 | 6.1 | 19.5 |
| OR 217 SB | 2019 |  | 11.2 | 6.0 | 17.3 | 9.4 | 4.6 | 13.9 | 13.2 | 7.1 | 20.2 |

A. Buffer time is the extra time (or time cushion) that travelers should add to their average travel time to ensure on-time arrival.
B. Total or reliable travel time is the add dition of average travel time with buffer travel time. This is the time travelers should allot for


## 2019 average speed (mph)



OR 217 bottlenecks
OR 217 connects US 26 and I-5 as well as serves the cities of Beaverton and Tigard. OR 217 is congested in most locations at some point during the day, with many bottlenecks feeding into one another
The NB corridor between Denney Road and I-5 is backed up in both the AM and PM peak as motorists travel to and through Beaverton. The bottleneck extends to Allen during the AM.

郎 Walker Road and Hall Boulevard due to weaving and high traffic near the Beaverton-Hilisdale Highway on- and offramp. Additional PM bottlenecks occur after the US 26 merge and before the l-5 merge. An AM bottleneck occurs between OR 99W and Walker

## How to Read a Bottleneck Map

Bottlenecks are labeled first by their "head," or location where the congestion begins to clear, and then by their "tail," or the distance congestion extends behind the "head".



Crash frequency per 10th of a mile
2015-2019
Source: 000T

## OR 217 safety

OR 217 had approximately 1,200 crashes in the five-year study period The vast majority of crashes were rear-end and side-swipe (overtaking) crashes, which mainly occur in the PM peak period. These types of crashes are typically the result of congestion. SPIS sites were identified based on crash frequency, crash rate and crash severity. There were three top 10 percent 2018 SPIS sites along the corridor.

Total crashes by time of day 2015-2019
Source: ODOT


## Type of crashes

 2015-2019Source: 0 ODOT


Total crashes by day of the week 2015-2019
Source: ODOT

Incidents (non-crash) clearance times 2015-2019


Incident (non-crash) frequency by time of day 2015-2019, total incidents by time of day


Incidents (non-crash) by type 2015-2019
Source: 000 T


The average time to clear an incident on OR 217 is approximately 25 minutes. The top-left graph shows clearance times in minutes from 2015 through 2019. The response time for an incident depends on the nature of the incident. Non-crash incident hot-spots include the OR 217/
I-5 interchange and the interchange with US 26.

More cars on the road correlate to more incidents. There is a higher number of incidents happening in the AM and midday peak period, exacerbating congestion in the corridor.

Disabled vehicle incidents account for 40 percent of non-crash incidents on OR 217, followed by hazardous debris (19\%) and abandoned vehicles (13\%).


## References

1. U.S. Census Bureau. "Annual Estimates of the Resident Population for Metropolitan Statistical Areas in the United States and Puerto Rico: April 1, 2010 to July 1, 2019." Accessed November 4, 2021
https://www.census.gov/data/tables/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
2. Portland Business Alliance. " 2018 Portland Region's Economic Check-up." Accessed November 4, 2021. https://portlandalliance.com/advocacy/2018-economic-check-up.html
3. Portland Metro. "2018 Urban Growth Report, Appendix 1-2018 Regional Economic Forecast." Accessed December 10, 2021. https://www.oregonmetro.gov/sites/default/files/2018/12/03/Appendix1-RegionalEconomicForecastFINAL 12032018.pdf
4. USA Today. "Oregon Wildfire closes I-84, jumps river into Washington." Accessed December 10, 2018. https://www.usatoday.com/story/news/nation-now/2017/09/06/eagle-creek-oregon-fire/636282001/
5. KGW. "Eastbound I-84 reopens after Eagle Creek Fire." Accessed November 4, 2021. https://www.kgw.com/article/traffic/eastbound-i-84-may-reopen-late-this-weekend/477714298

6, 7. Portland Business Alliance. "2014 Economic Impacts of Congestion on the Portland-metro and Oregon Economy." Accessed January 29, 2019. https://portlandalliance.com/assets/cta items/pdf/2014-cost-of-congestion-FINAL.pdf

8, 9, 10. Portland Business Alliance 2014. "Economic Impacts of Congestion on the Portland-metro and Oregon Economy." Accessed January 29, 2019. https://portlandalliance.com/assets/cta items/pdf/2014-cost-of-congestion-FINAL.pdf
11. Portland Business Alliance. " 2019 Value of Jobs Oregon's State of Trade." Accessed November 4, 2021. https://portlandalliance.com/assets/pdfs/2019-VOJ-Trade-Report-FINAL-web.pdf
12. U.S. Census Bureau. "Annual Estimates of the Resident Population for Counties in Oregon: April 1, 2010 to July 1, 2019." Accessed November 4, 2021. https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html
13. Oregon Employment Department. "Washington County, Annual Average Non-seasonably Adjusted Employment." Accessed November 4, 2021. https://www.qualityinfo.org/ed-ceest/

## Glossary

## Change in Data Sources

The data set used to calculate travel time and traffic volume in the 2020 Portland Region Traffic Performance Report diffe These differesces are explaind below:

Probe Data
For the emprical freeway travel time and speeds, ODOT used a commercial INRIX XD data source for this 2020 report in a commercial INRIXXD data source for this 2020 report in
contrast to the 2018 report which used a commercial HERE data source. The INRIX XD segment data includes estimates of segment travel times and segment speed (in mph ) by 15 -minute periods for each day. It is recognized that with each report update, data sources may change and/or more advanced data may become available. Trend lines will be similar with each data source, but replicating exact results from one report to another will be unlikely
For this report, the commercial INRIX XD data is reflected in the following performance measures: travel time, speed, buffer time, daily vehicle miles traveled, daily vehicle hours of delay, hours of congestion, bottleneck duration and bottleneck length. New refined data sources were used to more accurately capture freeway corridors within Region 1, slightly changing corridor lengths compared to the 2018 report.
System Performance Analysis
For this report, system performance analysis considered the regional and corridor operations primarily for 2019 as well as a five-year time frame for safety.

## Regional

The regional traffic performance overview provides a
region-wide cumulative performance evaluation of all
six freeway corridors.
Corridor
The corridor traffic performance overview provides
details on individual freeway corridor performance.
System Performance Measures
System performance measures are derived using basic data components such as time of day, travel time and speed. These terms are explained below:

## Time of Day

For this report, the time of day has been divided into four traffic analysis time periods. The AM, mid-day and PM time periods include adequate time to capture the current peak periods, in terms of traffic volume and congestion.

AM Peak Period
5:00 a.m. to 10:00 a.m. - duration of five hours in
he morning.
Mid-day Peak Period
0.00 a.m. to $3: 00 \mathrm{pm}$. - duration of five hours from late morning to mid-afternoon.
M Peak Period
3:00 p.m. to 9:00 p.m. - duration of six hours in the fternoon and evening.
Off-Peak Period
12:00 a.m. (midnight) to 5:00 a.m. - duration of five hours with low traffic volume for free-flow calculation.

## ravel Time and Speed

The travel times and speeds for each of the selected time periods were derived using five-minute interval data for the 24-hour workday (non-holiday weekday)

Average Travel Time
The average travel time on a route is determined during a pecific time interval. For example, the travel time to work efers to the total number of minutes that it usually took a person to get from home to work each day.

## Average Speed

Speed is the inverse of travel time. The average weekday speed is calculated by using the segment length and dividin by the average travel time, reported in miles per hour (mph).
Free-flow Speed and Travel Time
The free-flow speed and travel time are used as
a benchmark for the uncongested traffic conditions for th corridor. Free-fow speed is used as one of the ermirically hours of congestion. It is based on average speeds during the off-peak period (midnight to 5:00 a.m.) on workdays (nonholiday weekday) and reported for each freeway corridor.
95th Percentile Travel Time
The 95th percentile generally represents a reasonable upper boundary on expected motorist travel time. For commuters more than the planned time. The 95th percentile vehicular ravel times, in minutes, are estimated for each five-minute interval of the 24 -hour workday (non-holiday weekday) tallied for the reported time periods.

## Climate Change Indicators

Greenhouse Gas Emissions Annual greenhouse gas (GHG) emission rates were calculated for each freeway, by direction, in the Portland region using USEPA's Motor Vehicle Emissions Simulator (MOVES) model 2014b, ODOT vehicle counts and volum missions are represented by carbis analysis, GHG (CO2e) and includes carbon dioxide, methane and nitrou oxide. MOVES input files include meteorological data, fue characteristics, vehicle age, speed profile, local vehicle mix and vehicle inspection and maintenance program for the Metro area. This methodology was developed in consultation with Oregon Department of Environmental Quality and used MOVES modeling input files from Metro, DEQ and Washington State Department of Ecology,
Emission rates reflect three distinct vehicle groups - vehicles predominantly from Multnomah and Washington countie registered in Clark Country, Washington (13\%) and vehicles raveling in the Metro area that are not subject to an inspection and maintenance program ( $10 \%$ ). Default fuel inputs in MOVES were used, with the exception of updating biodiesel to $10 \%$ for Oregon vehicles.
mission rates were calculated for passenger vehicles, medium trucks and heavy trucks by speed bin. The speed bins cover a 5 -mile-per-hour (MPH) speed interval and align with the speed bins in the emission model that range from 2.5 to distribution on each freeway segment.

Annual vehicle miles traveled (VMT) was calculated for 252 non-holiday weekdays. VMT by hour was aggregated by speed bin and subdivided into vehicle type. Hourly emissions were averaged by season and averaged over a 24 hour period.

Emission rates by vehicle type and speed bin were multiplied by annual vehicle miles traveled by vehicle type o determine total annual emissions (measured as metric ons of CO2e per year per million vehicle miles traveled). missions represent talpipe emissions and do no hclude the fuel.

In addition to the total emissions calculated using 2019 raffic data, a scenario was modeled to estimate the potential emissions savings from eliminating slow speed on the freeways due to congestion. In this scenario, VMT associated with speed bins below 50 MPH were assigned he emission rate of the 50 MPH speed bin. The resulting total emissions by highway and highway segment for this 2019 to establish the percentage difference.

Corridor Performance Indicators
Using the measurements from traffic data, key traffic indicators can be defined and used to evaluate freeway system performance. These indicators are grouped into the following categories:

## Congestion and Delay Indicators

Congestion and Delay
Congestion is relatively easy to recognize-roads filled with cars, trucks, and buses. Congestion usually relates to an excess of vehicles on a portion of roadway at a particular time resulting in speeds 75 percent (or lower) of the roadway's is a change from the 2018 report). This senerally correlates to speeds at or below 45 miles per hour Severe congestion refers to speeds below 30 miles per hour.

Costs of Delay
The costs of delay in the TPR are calculated as:
Daily Cost of Delay = (total daily vehicle delay in hours * passenger vehicle \% * $\$ 26.44$ per hour) + (total daily vehicle daily vehicle delay in hours * heavy truck $\%$ * $\$ 33.24$ per hour

The daily cost of travel time for each vehicle type is based on a published ODOT report on the value of travel time, which can be found here:
tps://www.oregon.gov/ODOT/Data/Documents/2017-The Value-of-Travel-Time.pdf

## Annual Cost of Delay $=$ Daily Cost of Delay $* 250$ days

 250 days represent the average non-holiday weekdays in a year.Hours of Congestion (HOC)
The duration of traffic congestion is reported as the average number of hours per workday (non-holiday weekday) that the motorist will experience congestion. The HOC for a corridor is the total number of hours that the corridor has at least the sum of the durations of the following bottlenecks 1) AM peak from 10th St to 82 nd Ave with 3.5 hours; 2) PM peak from Powell Blvd to Airport Way with 4.0 hours. These two bottlenecks total an HOC of 7.5 on I-205 SB. Region-wide HOC is based on the average HOC reported for all corridors in both directions.
Daily Vehicle Hours of Delay (DVHD)
The total travel delay experienced by motorists on the roadway during an average weekday, reported in vehicl hours. DVHD is estimated for each five-minute interval of the 24-hour workday (non-holiday weekday).
Daily Vehicle Miles Traveled (DVMT) Dis is of throught. Gererall, Dhrougpurill
the system breaks down and the tolerance to congestion is reached. DVMT was estimated for each 5 -minute interval of the 24-hour workday (non-holiday weekday).

## Bottleneck Indicators

Recurring Bottlenecks
Areas where traffic slows to an average workday (nonholiday weekday) speed below 75 percent of free-flow the capacity of the roadway the capacity of the roadw
Bottleneck Duration
The number of hours per day (non-holiday weekday) that averase speeds fall below 75 percent of free-flow speed. Bottleneck Length
The total length in miles of a bottleneck, where the average workday (non-holiday weekday) speeds fall below 75 percent of free-flow speed.

## Reliability Indicators

Buffer Travel Time
Buffer travel time is the extra time (time cushion) that travelers should add to their average travel tim to ensure on-time arrival in 19 out of 20 workday (95 percent of the time).
Reliable Travel Time (Planning Travel Time)
The sum of average travel time and buffer travel time. This is the total time travelers should allot for on-time arrival at their destination

## Safety Indicators

ODOT crash and non-crash incident trends are analyzed over a five-year period. Crashes were analyzed for each freeway mainline corridor excluding those occurring at ramps and interchange locations.

SPIS
The Safety Priority Index System (SPIS) is a method
for identifying high-crash locations on state highways based on crash frequency, rate and severity. Top
targeted project improvements.
Annual Crashes
The total crashes that occur on each freeway corrido for each year.
Crash Frequency
The crash frequency is an indicator of how often crashe occur by time of day or by location.
Non-crash Incidents
All roadway incidents identified through ODOT's Traffic Incident Management program, excluding crashes. Commo non-crash incidents on the freeway system include disabled vehicles, abandoned vehicles, hazardous debris and can contribute to and/or result from congested freeway
conditions and may require some form of incident response, otorist assistance or incident managemen

Non-crash Incident Median Clearance Duration his performance measure is reported for each freeway corridor and indicates the median duration in minutes obor incident responders to address a non-crash hazardous incident and leave the scene. While there are
many non-crash incident types, only those that are deemed hazardous require ODOT incident response to deploy to the hazardous require
incident location.

Data Sources
INRIX XD
NRIXXD speed data was obtained from the Probe Data Analytics (PDA) Suite of the RITIS platform for the list of fina XD segments. The data was downloaded using the Massive Data Downloader tool in the PDA Suite.
PORTAL
Portland Oregon Regional Transportation Archive Listing (PORTAL) is the official Archived Data User Service (ADUS) for the Portland Metropolitan region as specified in the Regiona TS Architecture. PORTAL provides a centralized, electronic database that facilitates the collection, archiving, and sharing of data and information for public agencies within he reion. The data stored in formalicluces 20 -second metropolitan resion, arterial signal data travel time data, weather data, incident data, variable message data, truck volumes, transit data and arterial signal data.
Automatic Traffic Recorder (ATR)
ODOT collects traffic data throughout the state, including in the Portland region, via permanent automatic traffic ecording stations. ATR data contributes to vehicle counts and classification.
Lane Miles
The reported lane miles were based on published lane miles data from the Oregon Mileage Report, which can be found data from the Oregon Nileage Report, which can be found Assets-Mileage.aspx\#OMR.
Crashes and Non-crash Incidents
ODOT collects data for each reported crash and non-cras incident on state highways. The crash data can be found Crash asne Incidents (both crash incidents and norincidents) are identified through ODOT's Traffic Incident Manasement program Incident data can be obtained through RITIS.
Truck Volume
Truck volume and truck percent of annual average daily raffic is available at the highway segment level. ODOT rovides this data online at https://gis.odot.state.or.us time of analysis for this report was volun

## Commodity Flows

The freight commodity flow analysis included in this report indicates general commodity types, values and weight transported by truck on freeways in the Portland region ODOT's Transportation Planning Analysis Unit comp ane anys Eramework (FAF) data from FHWA, to produce commodity flow estimates for 2019 .

Transportation Project Specific Terms

Active Traffic Management (ATM)
The use of dynamic tools to manage recurring and nonrecurring congestion based on prevaliling traffic trip reliability.
Auxiliary Lane
An auxiliary lane typically provides a direct connection on the freeway from one interchange ramp to the next. The purpose is to allow the mixing of different traffic speeds that he slower movements from the freeway mainline, reduc conflicts that cause congestion and improving safety and traffic flow at the freeway interchanges.
Corridor Bottleneck Operations Study (CBOS)
six Portland metro area corridors (1-5, |-205, I-84, I-405, OR 217 and US 26 ) The study recommends projects to improve reeway safety and operations.

## Portland Region <br> 2020 Traffic Performance Report Appendix

Oregon Department of Transportation
Region 1

BEFORE/AFTER STUDIES

## l-5 Southbound: Lower Boones Ferry Road to I-205 Freeway Improvement Performance Evaluation

I-5 Southbound: Lower Boones Ferry Road to I-205 Freeway Improvement Performance Evaluation
the Challenge:
The stretch of southbound I-5 between OR 217 and I-205 was one of the most congested locations in the Portland region, especially during the afternoon hours. This was primarily due to the high volume of traffic merging onto I-5 from OR 217 and weaving with the traffic leaving I-5 at downstream exits. Additionally, the large majority of vehicles exiting at I-205 enter I-5 at one of the four upsteam on-ramps. The afternoon queues extended back on l-5 to the Haines Street exit and on OR 217 past the 72 nd Avenue interchange. Afternoon traffic was often under stop-and-go conditions. Without improvements, congestion and related crashes were anticipated to increase in the area due to growing travel demand.

## MPROVEMENTS MADE:

The operational enhancements isted below were selected in part because of ODOT's objective to preserve reliable travel times.
Added a single southbound auxiliary lane on I-5 from north of Lower Boones Ferry Road to l-205 to relieve congestion and educe crashes. The auxiliary lane work included on- and ff-ramp lane modifications at Lower Boones Ferry Road and Nyberg Street, and the on-ram to l-205.
Reduced conflicts from merging movements onto the mainlin nd allowed for more direct rute for people travelling from OR217 to I-205, while improving traffic flow on I-5.

Repaved I-5 from OR 99W to 1-205, approximately 5.5 miles This extended the service life of the road for another 10 to 15 years. By combining the pavement and southbound pavement and southbound
auxiliary lane work, the project auxiliary lane work, the project
took advantage of cost savings took advantage of cost sav mpacts to travelers.
ane configuration AFTER IMPROVEMENTS:


## PROJECT CORRIDOR:

 LENGTH: 1.9 mi POSTED SPEED: 55 mph CONSTRUCTION DATE: Feb 2018 - Oct 2018 cost: $\$ 10.4 \mathrm{M}^{1}$

> WHAT IS AN AUXILIARY LANE?

An auxiliary lane typically provides a direct connection on the freeway from one interchange ramp to another. The purpose is to allow the mixing lane separates the slower movements from the freeway mainline, reducing conflicts that cause congestion and improving safety and traffic flow at the freeway interchanges.

## RESULTS:

This project was primarily intended to reduce congestion on I-5 southbound over a segment of just under two miles in length between Lower Boones Ferry Road and I-205. Travelers also experienced benefits upstream of this project, reaching as far as 3.2 miles up l-5 southbound and 1.3 miles up OR 217 southbound. This project represented the completion of efforts spanning nearly a decade to extend an auxiliary lane from the OR 217 southbound on-ramp to the l-205 off-ramp to lessen the impacts of traffic weaving between entrance and exit points in this area

## RELIABLE TRAVEL TIME (MIN):

ON I-5 SOUTHBOUND:

## $\downarrow 37 \%$

C1,
ELIABLE TRAVEL TIMES IMPROVED BY 37 PERCENT ON I-5 SOUTHBOUND DURING THE WEEKDAY P.M. PEAK PERIOD (3-6 P.M.), EDCING BY 14 MINUTES THE PIME NHIS AREA.

## ON OR 217 SOUTHBOUND

 $\downarrow 28 \%$RELIABLE TRAVEL TIMES IMPROVED BY 28 PERCENT ON OR 217 SOUTHBOUND FROM OR 9W TO I-5 (1.3 MILES) DURING THE WEEKDAY P.M. PEAK PERIOD (3-6 P.M.), REDUCING BY TWO MINUTES THE TIME NEEDED TO CONFIDENTLY travel through this area

VALUE OF TIME SAVED:

## \$13.8M

S
as a result of the reduced congestion FROM 2017 TO 2019, THE VALUE OF TIME SAVED FOR THE TRAVELING PUBLIC TOTALS HE ANNUAL COST OF CONGESTION-FROM \$23.6 MILLION TO \$9.8 MILLION.

SAFETY:

## $\downarrow 29 \%$,

THE NUMBER OF CRASHES IN A ONE YEAR PERIOD IN THE STUDY AREA DECREASED FROM 318 TO 226-A 29 PERCENT DECREASE-INDICATING A REDUCTION OF SAFETY CONCERNS RELATED TO CONFLIC POINTS AND WEAVING CHALLENGES.

## I-205 Northbound: I-84 Eastbound to Killingsworth Street Freeway Improvement Performance Evaluation

## the Challenge:

The stretch of northbound I-205 between the I-84 eastbound on-ramp and the US 30 Bypass West/Killingsworth Street off-ramp had reached its vehicle capacity. High traffic volumes and short merging distances caused speeds to drop below five miles per hour during peak travel times. The worst congestion started at the US 30 Bypass/Sandy Boulevard exit and extended more than four miles to south of Powell Boulevard. Without improvements, congestion and related crashes were anticipated to increase in the area.

MPROVEMENTS MADE:
The selection of the following mprovements was guided by DOT's objective to invest in operational enhancements that preserve reliable travel times.
Added an auxiliary lane on I -205 northbound connecting l- 1 -84 eastbound on-ramp to the US 30 Bypass West/ Killingsworth Street off-ramp.

Added ODOT RealTime signs displaying traffic flow and roadway conditions, enabling roadway conditions, enabling drivers to make better informed travel decisions. These new signs will assist in reducing
crashes, improve travel time crashes, improve travel time
reliability, and enhance transit reliability, and enhance tran project area.

LANE CONFIGURATION AFTER IMPROVEMENTS:


## WHAT IS AN AUXILIARY LANE?

An auxiliary lane typically provides a direct connection on the freeway from one interchange ramp to another. The purpose is to allow the mixing of different traffic speeds that are entering and exiting the freeway. The ane separates the slower movements from the freeway mainline, reducing conficts that cause conge

|-205 Northbound: I-84 Eastbound to Killingsworth Street Freeway Improvement Performance Evaluation

## RESULTS

This project included improvements over an approximately one-mile segment along northbound I-205. However, because the congestion caused by this bottleneck extended far to the south, the benefits are summarized over an approximately 11-mile segment on I-205 (approximately Airport Way to OR 224), as well as over the I-84 ramps feeding into I-205, to capture the full impact of improvements. Note that a separate auxiliary lane project from Powell Boulevard to $\mathrm{I}-84$ westbound was still in construction during the "after" time period and is part of the 11-mile segment. This construction activity may have been slowing traffic flow and, therefore, the potential benefits that could be realized from the I-84 eastbound to Killingsworth Street improvements may be greater than measured.

RELIABLE TRAVEL TIME (MIN):

## DURING P.M. PEAK PERIOD

$\downarrow 22 \%$
RELIABLE TRAVEL TIMES IMPROVED BY 22 PERCENT ON I-205 NORTHBOUND DURING THE WEEKDAY P.M. PEAK PERIOD (3-6 P.M.), REDUCING BY 11 MINUTES (3-6 P.M.), REDUCING BY 11 MINUTES travel through this area.

DURING A.M. PEAK PERIOD

## $\downarrow$ 12\%

ELIABLE TRAVEL TIMES IMPROVED by 12 PERCENT ON I-205 NORTHBOUND dURING THE WEEKDAY A.M. PEAK PERIOD (6-9 A.M.), REDUCING BY three minutes the time needed TO CONFIDENTLY TRAVEL THROUGH this area

HOURS OF CONGESTION

ON THE I-84 EASTBOUND RAMP TO l-205 NORTHBOUND:

## 4 HRS 30 MIN <br> ?

The duration of the congested PERIOD ON THE I-84 EASTBOUND RAMP FEEDING INTO I-205 NORTHBOUND DURING AN AVERAGE WEEKDAY WAS PEDUCED BY FOUR HOURS AND 30 MINUTES-A 43 PERCENT DECREASEFROM 10.5 HOURS TO 6 HOURS.

ON THE I-84 WESTBOUND RAMP TO -205 NORTHBOUND:

# $\downarrow 4$ HRS 

HE DURATION OF THE CONGESTED ERIOD ON THE I-84 WESTBOUND RAMP EEDING INTO I-205 NORTHBOUND ding alerace weekday was INUTES A 43 PERCENT DECREASE RROM 11 HOURS TO 6.25 HOURS. Oregon
Degent
of Trantment

## AVERAGE TRAVEL SPEED:

## ON I-205 NORTHBOUND:

## +7 MPH

DURING THE WEEKAY AM. PEAK hour (7-8 A.M.), AVERAGE TRAVEL SPEEDS (7-8 A.M.), AVERAGE TRAVEL SPEEDS
NCREASED BY SEVEN MILES PER HOUR (MPH)-AN 18 PERCENT INCREASE-FROM 38 MPH TO 45 MPH

ON THE I-84 EASTBOUND RAMP TO I-205 NORTHBOUND:

## +9 MPH

DURING THE WEEKDAY A.M. PEAK HOUR (7-8 A.M.), AVERAGE TRAVEL SPEEDS NCREASED BY NINE MILES PER HOUR (MPH)-AN 18 PERCENT INCREASE-FROM 49 MPH TO 58 MPH

ON THE I-84 WESTBOUND RAMP TO l-205 NORTHBOUND:

## +16 MPH

DURING THE WEEKDAY A.M. PEAK HOUR (7-8 A M I AVERAGE TRAVEL SPEEDS IN CREASED BY 16 MILES PER HOUR (MPH)A 46 PERCENT INCREASE-FROM 35 MPH TO 51 MPH.

VEHICLE HOURS OF DELAY:

## $\downarrow 15 \%$


he number of Vehicle hours of delay experienced on an average WEEKDAY DECREASED BY 1,010 VEHICLE HOURS-A 15 PERCENT DECREASE-FROM 6,960 VEHICLE HOURS TO 5,950 VEHICLE HOURS.

VALUE OF TIME SAVED:

## \$6.7M

as a result of the reduced CONGESTION FROM 2017 TO 2019, HE VALUE OF TIME SAVED FOR TH RAVELING PUBLIC TOTALS \$6.7 MLION ANHAL COST OF CONGESTION IN FROM $\$ 47$ MILLION TO $\$ 40.3$ MILLION FROM \$47 MILLION TO \$40.3 MILLION.


## |-205 Southbound: I-84 Eastbound to Powell Boulevard Freeway Improvement Performance Evaluation

## HE CHALLENGE:

The stretch of southbound I-205 between I-84 eastbound and Powell Boulevard had reached its vehicle capacity. High traffic volumes and short merging distances caused speeds to drop below 10 miles per hour during peak travel times. The worst congestion started at the Powell Boulevard interchange and extended more than five miles north to Airport Way. Without improvements, congestion and related crashes were anticipated to increase in the area.

## MPROVEMENTS MADE:

The selection of the following improvements was guided by ODOT's objective to invest in operational enhancements that preserve reliable travel times.
Added an auxiliary lane on l -205 southbound connecting he l-84 eastbound on-ramp the Division Street/ Powel Boulevard off-ramp

Installed ODOT RealTime signs displaying traffic flow and roadway conditions, enabling roadway conditions, enabling travel decisions. These new travel decisions. These new crashes, improve travel time reliability, and enhance transit eperations throughout the oughout the project area.

ANE CONFIGURATION AFTER IMPROVEMENTS:


## WHAT IS AN AUXILIARY LANE?

An auxiliary lane typically provides a direct connection on the freeway from one interchange ramp to another The purpose is to allow the mixing of different traffic speeds that are entering and exiting the freeway. The lane separates the slower movements from the freeway mainline, reducing conflicts that cause congestion and improving safety and traffic flow at the freeway interchanges.


I-205 Southbound: I-84 Eastbound to Powell Boulevard Freeway Improvement Performance Evaluation

## RESULTS:

This project included improvements to a segment, just under one-mile long, along southbound I-205. However, because the congestion caused by this bottleneck extended far to the north, the benefits are summarized over an approximately six-mile segment on I-205 (approximately Foster Road to the Columbia River), as well as over the $\mathrm{I}-84$ ramps feeding into $\mathrm{I}-205$, to capture the full impact of improvements.

RELIABLE TRAVEL TIME (MIN)

$\downarrow 24 \%$


THE NUMBER OF VEHICLE HOURS OF DELAY EXPERIENCED ON AN AVERAGE WEEKDAY DECREASED BY 460 VEHICLE HOURS-A 24 PERCENT DECREASEFROM 1,915 VEHICLE HOURS TO 1,455 VEHICLE HOURS

VALUE OF TIME SAVED:

## \$3M

AS A RESULT OF THE REDUCED
CONGESTION FROM 2017 TO 2019, THE VALUE OF TIME SAVED FOR THE TRAVELING PUBLIC TOTALS $\$ 3$ MILLION-A 24 PERCENT REDUCTION IN THE ANNUAL COST OF CONGESTION-FROM $\$ 12.9$ MILLION TO $\$ 9.9$ MILLION.
${ }^{1}$ Only includes costs directly associated with the southbound auxiliary lane (i.e., does not include northbound work or paving outside the extents of the auxiliary lane)

US 26：Cornelius Pass Road to 185th Avenue Freeway Improvement Performance Evaluation


THE CHALLENGE：
Congestion on the stretch of US 26 between Cornelius Pass Road and 185th Avenue was particularly evident from 3－6 p．m Population and employment in Washington County continue to grow including high concentra－ to grow incluaing high concentra－ tion on the western edge，increas
ing traffic demand on US 26 ．We ing traffic demand on US 26 ．We recognize we can＇t build our way of
out of congestion，but we can make out of congestion，but we can make
strategic investments in the system strategic investments in the system congestion and improve safety．

## IMPROVEMENTS MADE

The selection of the following improvements was guided by ODOT＇s objective to invest in operational enhancements that preserve reliability，especially in this part of the region with its employment centers．These improvements were a part of a Jobs and Transportation Act funded project．

Extended the third lane on US 26 in each direction between Cornelius Pass Road and 185th Avenue．The majority of the widening occurred to the inside of the highway，in the highway cente median．
Replaced the two US 26／Rock Creek bridges with one bridge This work took place over the Rock Creek Trail．

Improved the north side of the US 26／Cornelius Pass Road interchange，including adding a second lane to the westbound off－ramp（the loop ramp）．
Built a noise wall on the north side of US 26 in the Rock Creek neighborhood Added ramp meters to preserve capacity

LANE CONFIGURATION AFTER IMPROVEMENTS：


Oregon Department
of Transportation

US 26：Cornelius Pass Road to 185th Avenue Freeway Improvement Performance Evaluation

## EASTBOUND RESULTS

This project included improvements to both directions of US 26 between Cornelius Pass Road and 185th Avenue． However，the benefits shown below are for eastbound traffic conditions only，because the eastbound
improvements resulted in the most significant benefits．Also，most benefits were experienced on weekdays from $3-6$ p．m．，which is when most congestion occurs．

## AVERAGE TRAVEL SPEED： <br> RELIABLE TRAVEL TIME（MIN）

## ＋6．5 MPH

URING THE WEEKDAY P．M．PEAK PERIOD （3－6 P．M．），AVERAGE TRAVEL SPEEDS NCREASED BY 6．5 MILES PER HOUR 49.5 MPH TO 56 MPH ．

## VEHICLE HOURS OF DELAY

## $\downarrow 53 \%$

the number of Vehicle hours of DELAY EXPERIENCED ON AN AVERAGE WEEKDAY DECREASED BY 54 VEHICLE HOURS－A 53 PERCENT DECREASE－FROM 102 VEHICLE HOURS TO 48 VEHICLE HOURS．

VALUE OF TIME SAVED：

## \＄362K

AS A RESULT OF THE REDUCED CONGESTION FROM 2017 TO 2019，THE VALUE OF TIME SAVED FOR THE TRAVELING PUBLIC TOTALS $\$ 362,000-A 53$ PERCENT REDUCTION IN THE ANNUAL COST OF CONGESTION－ FROM $\$ 686,000$ TO $\$ 324,000$ ．

PERCENT ON US 26 EASTBOUND FROM 85TH AVENUE TO BROOKWOOD PARKWA （3．53 MILES）DURING THE WEEKDAY P．M． minute the time needed to confidently travel through this area

## $\downarrow 15 \%$



HOURS OF CONGESTION

## $\downarrow 30 \mathrm{MIN}$ 口回白

the duration of the congested PERIOD DURING AN AVERAGE WEEKDAY AFTERNOON WAS REDUCED BY 30 MINUTES－A 22 PERCENT DECREASE－ FROM 2.25 HOURS TO 1．75 HOURS

SAFETY：

## $\downarrow 30 \%$ ®

HE NUMBER OF CRASHES IN A ONE YEAR PERIOD FOR BOTH DIRECTIONS IN THE STUDY AREA DECREASED FROM 37 TO 26－A 30 PERCENT DECREASE－INDICATING A REDUCTION OF SAFETY CONCERNS RESULTING FROM CONGESTED－RELATED CONFLICTS．


[^0]:    Nếu quý vị muốn thông tin về dự án này được dịch sang tiếng Việt，xin gọi 503－731－4128．

[^1]:    *I-5 and I-205 costs only include elements required in order to construct the auxiliary lanes (i.e., costs do not include paving outside the extents of the auxiliary lanes). The cost for US 26 is the full project cost as all project elements were required in order to add the lane, including the noise wall and bridge work.

[^2]:    ?

    ## Bottleneck locations cause crash HOT-SPOTS which, in

